DOI QR코드

DOI QR Code

External Tibial Torsion with Proximal Tibia Vara in Total Knee Arthroplasty of Advanced Osteoarthritis with Severe Varus Deformed Knees

심한 내반 변형의 진행성 관절염 환자의 인공 슬관절 전치환술 시 경골 근위부의 내반을 동반한 외회전 변형

  • Sun, Doo-Hoon (Department of Orthopedic Surgery, Daejeon Sun Hospital) ;
  • Song, In-Soo (Department of Orthopedic Surgery, Daejeon Sun Hospital) ;
  • Kim, Jun-Beom (Department of Orthopedic Surgery, Daejeon Sun Hospital) ;
  • Kim, Cheol-U (Department of Orthopedic Surgery, Daejeon Sun Hospital) ;
  • Jung, Deukhee (Department of Orthopedic Surgery, Daejeon Sun Hospital) ;
  • Jeong, Uitak (Department of Orthopedic Surgery, Daejeon Sun Hospital)
  • Received : 2018.12.23
  • Accepted : 2019.01.22
  • Published : 2020.02.28

Abstract

Purpose: External tibia torsion and proximal tibial vara have been reported in severe varus deformed osteoarthritis, which is a tibio-femoral angle of more than 20°. The radiology measurements were compared with those of control group and the preoperative and follow-up radiology and clinical results were examined. Materials and Methods: From January 2007 to March 2016, 43 knees from 37 persons, who underwent total knee arthroplasty for a severe varus deformity of more than 20° on the tibio-femoral angle on the standing radiographs and had a follow-up period more than two years, were examined. The mean follow-up period was 45.7 months. The control group, who underwent conservative treatments, had Kellgren-Lawrence grade three osteoarthritis and a tibio-femoral angle of less than 3° varus. The external tibial torsion of enrolled patients and control group were estimated using the proximal tibio-fibular overlap length and the tibial torsion values on computed tomography. The proximal tibia vara was measured using the proximal tibial tilt angle. The preoperative and postoperative proximal tibio-fibular overlap length, tibial torsion value, proximal tibial tilt angle, and hospital for special surgery (HSS) score were evaluated. Results: The mean proximal tibio-fibular overlap length was 18.6 mm preoperatively and 11.2 mm (p=0.031) at the follow-up. The control group had a mean proximal tibio-fibular overlap length of 8.7 mm (p=0.024). The mean tibial torsion value was 13.8° preoperatively and 14.0° (p=0.489) at the follow-up. The control group had a mean tibial torsion value of 21.9° (p=0.012). The mean proximal tibial tilt angle was 12.2° preoperatively and 0° (p<0.01) at the follow-up. The control group had a mean proximal tilt angle of 1.2° (p<0.01). The preoperative tibiofemoral angle and mechanical axis deviation were corrected from preoperative 28.3° and medial 68.4 mm to postoperative 0.7° and medial 3.5 mm (p<0.01, p<0.01), respectively. The HSS scores increased from 34 points of preoperatively to 87 points at the last follow-up (p=0.028). Conclusion: Patients with advanced osteoarthritis with a severe varus deformity of more than 20° had significant increases in the external tibial torsion and varus of the proximal tibia. The tibial torsion value before and after surgery in the enrolled patients was not changed statistically, but good clinical results without complications were obtained.

목적: 경골-대퇴 각이 20° 이상인 심한 내반 변형의 진행성 관절염 환자에서 경골 근위부의 내반과 외회전 변형이 보고된 바 있다. 저자들은 인공 슬관절 전치환술 시 경골 근위부의 외회전 변형 및 골간단 상부의 내반 변형에 대하여 방사선적 계측으로 대조군과 비교하였고 수술 전후의 방사선 및 임상 결과를 알아보았다. 대상 및 방법: 2007년 1월부터 2016년 3월까지 인공 슬관절 전치환술 중 수술 전 기립 방사선상 경골-대퇴 각이 20° 이상의 내반 변형을 보이고 2년 이상 추시가 가능했던 37명, 43 슬관절을 대상으로 하였다. 평균 추시 기간은 45.7개월이었다. 비수술적 치료를 받은 Kellgren-Lawrence 제3단계이며 경골-대퇴 각이 3° 이하인 43 슬관절을 대조군으로 설정하여 경골 근위부의 외회전 변형과 내반 변형을 비교하였다. 경골 근위부의 외회전 변형은 단순 방사선상의 근위 경비골 중첩 길이와 컴퓨터 단층촬영 상의 경골 염전각을, 근위 경골의 내반 변형은 근위 경골 경사각을 대상군과 대조군에서 각각 측정하여 비교하였다. 대상군의 수술 전후에 근위 경비골 중첩 길이, 경골 염전각, 근위 경골 경사각, hospital for special surgery (HSS) 점수를 측정하여 비교하였다. 결과: 대상군의 수술 전 및 추시상 근위 경비골 중첩길이는 각각 평균 18.6 mm, 평균 11.2 mm (p=0.031)로, 대조군의 평균 8.7 mm와 통계적으로 유의한 차이가 있었다(p=0.024). 경골 염전각은 수술 전 평균 13.8°에서 최종 추시 상 평균 14.0°로 통계적 유의성이 없었으며(p=0.489), 대조군의 평균 21.9°와 통계적으로 유의한 차이가 있었다(p=0.012). 근위 경골 경사각은 수술 전 평균 12.2°, 최종 추시상 평균 0°였으며(p<0.01), 대조군의 평균 1.2°와 통계적으로 유의한 차이가 있었다(p<0.01). 대상군의 임상적 결과는 HSS 점수가 수술 전 평균 34점에서 최종 추시 시 평균 87점으로 증가하였으며 통계적으로 유의성이 있었다(p=0.028). 결론: 20° 이상의 심한 내반 변형의 진행성 관절염 환자는 대조군에 비해 근위 경골의 외회전 변형과 골간단 상부의 내반 변형이 통계적으로 의미 있게 증가되었다. 대상군의 수술 전후의 경골 염전각은 통계적으로 의미 있는 변화가 없었으나 합병증 없이 좋은 임상 결과를 보였다.

Keywords

References

  1. Chon JG, Song IS, Kim JB, Jang GI, Ahn CH, Yoon JY. The effects of autologous structural bone graft without internal fixation on posteromedial tibial bone defect in primary total knee arthroplasty. J Korean Orthop Assoc. 2017;52:514-20. https://doi.org/10.4055/jkoa.2017.52.6.514
  2. Cooke D, Scudamore A, Li J, Wyss U, Bryant T, Costigan P. Axial lower-limb alignment: comparison of knee geometry in normal volunteers and osteoarthritis patients. Osteoarthritis Cartilage. 1997;5:39-47. https://doi.org/10.1016/S1063-4584(97)80030-1
  3. Nagamine R, Miyanishi K, Miura H, Urabe K, Matsuda S, Iwamoto Y. Medial torsion of the tibia in Japanese patients with osteoarthritis of the knee. Clin Orthop Relat Res. 2003;408:218-24. https://doi.org/10.1097/00003086-200303000-00028
  4. Matsui Y, Kadoya Y, Uehara K, Kobayashi A, Takaoka K. Rotational deformity in varus osteoarthritis of the knee: analysis with computed tomography. Clin Orthop Relat Res. 2005;433:147-51. https://doi.org/10.1097/00003086-200504000-00023
  5. Turner MS. The association between tibial torsion and knee joint pathology. Clin Orthop Relat Res. 1994;302:47-51.
  6. Eckhoff DG, Johnston RJ, Stamm ER, Kilcoyne RF, Wiedel JD. Version of the osteoarthritic knee. J Arthroplasty. 1994;9:73-9. https://doi.org/10.1016/0883-5403(94)90140-6
  7. Yagi T, Sasaki T. Tibial torsion in patients with medial-type osteoarthritic knee. Clin Orthop Relat Res. 1986;213:177-82.
  8. Ise N. Torsion of the lower extremity. J Jpn Orthop Assoc. 1976;50:157-68.
  9. Akagi M, Matsusue Y, Mata T, et al. Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clin Orthop Relat Res. 1999;366:155-63. https://doi.org/10.1097/00003086-199909000-00019
  10. Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L. Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res. 2001;392:46-55. https://doi.org/10.1097/00003086-200111000-00006
  11. Berger RA, Crossett LS, Jacobs JJ, Rubash HE. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res. 1998;356:144-53. https://doi.org/10.1097/00003086-199811000-00021
  12. Nicoll D, Rowley DI. Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J Bone Joint Surg Br. 2010;92:1238-44. https://doi.org/10.1302/0301-620X.92B9.23516
  13. Rhoads DD, Noble PC, Reuben JD, Mahoney OM, Tullos HS. The effect of femoral component position on patellar tracking after total knee arthroplasty. Clin Orthop Relat Res. 1990;260:43-51.
  14. Jakob RP, Haertel M, Stussi E. Tibial torsion calculated by computerised tomography and compared to other methods of measurement. J Bone Joint Surg Br. 1980;62:238-42. https://doi.org/10.1302/0301-620X.62B2.7364840
  15. Madadi F, Madadi F, Maleki A, Shamie AN, Washington ER 3rd, Yazdanshenas H. A new method for tibial torsion measurement by computerized tomography. J Orthop. 2015;13:43-7.
  16. Koenig JK, Pring ME, Dwek JR. MR evaluation of femoral neck version and tibial torsion. Pediatr Radiol. 2012;42:113-5. https://doi.org/10.1007/s00247-011-2206-0
  17. Kharbanda Y, Sharma M. Autograft reconstructions for bone defects in primary total knee replacement in severe varus knees. Indian J Orthop. 2014;48:313-8. https://doi.org/10.4103/0019-5413.132525
  18. Bilgen MS, Eken G, Guney N. Short-term results of the management of severe bone defects in primary TKA with cement and K-wires. Acta Orthop Traumatol Turc. 2017;51:388-92. https://doi.org/10.1016/j.aott.2017.02.002
  19. Staheli LT, Engel GM. Tibial torsion: a method of assessment and a survey of normal children. Clin Orthop Relat Res. 1972;86:183-6. https://doi.org/10.1097/00003086-197207000-00028
  20. Turner MS, Smillie IS. The effect of tibial torsion of the pathology of the knee. J Bone Joint Surg Br. 1981;63:396-8. https://doi.org/10.1302/0301-620X.63B3.7263753
  21. Clementz BG. Assessment of tibial torsion and rotational deformity with a new fluoroscopic technique. Clin Orthop Relat Res. 1989;245:199-209. https://doi.org/10.1097/00003086-198908000-00031
  22. Fabry G, Cheng LX, Molenaers G. Normal and abnormal torsional development in children. Clin Orthop Relat Res. 1994;302:22-6.
  23. Griffin FM, Insall JN, Scuderi GR. The posterior condylar angle in osteoarthritic knees. J Arthroplasty. 1998;13:812-5. https://doi.org/10.1016/S0883-5403(98)90036-5
  24. Kobayashi A, Himeno R, Uezaki N, Toyonaga T, Mitsuyasu T, Chikama H. Rotation of the leg in osteoarthritis of the knee joint(varus type). Jpn Orthop Surg. 1978;29:753.