DOI QR코드

DOI QR Code

Midterm Results of Bipolar Hemiarthroplasty for Unstable Intertrochanteric Femoral Fractures Using a Type 3C Cementless Stem

불안정성 대퇴골 전자간 골절에 3C형 무시멘트 대퇴 스템을 이용한 고관절 반치환술의 중기 결과

  • Chung, Woochull (Department of Orthopedic Surgery, St. Carollo Hospital) ;
  • Cho, Hong Man (Department of Orthopedic Surgery, Gwangju Veterans Hospital) ;
  • Kim, Sun do (Department of Orthopedic Surgery, Gwangju Veterans Hospital) ;
  • Park, Jiyeon (Department of Orthopedic Surgery, Gwangju Veterans Hospital) ;
  • Kwon, Kihyun (Department of Orthopedic Surgery, Gwangju Veterans Hospital) ;
  • Lee, Young (Veterans Medical Research Institute, Veterans Health Service Medical Center)
  • 정우철 (성가롤로병원 정형외과) ;
  • 조홍만 (광주보훈병원 정형외과) ;
  • 김선도 (광주보훈병원 정형외과) ;
  • 박지연 (광주보훈병원 정형외과) ;
  • 권기현 (광주보훈병원 정형외과) ;
  • 이영 (한국보훈복지의료공단 보훈의학연구소)
  • Received : 2020.02.28
  • Accepted : 2020.08.20
  • Published : 2020.12.30

Abstract

Purpose: Bipolar hemiarthroplasty is used as an alternative to open reduction and internal fixation for unstable intertrochanteric fractures in elderly patients. Recent advances in medical systems and technologies have resulted in increased survival rates after intertrochanteric fractures of the femur, requiring selection of the appropriate femoral stems considering the mid- to long-term duration of survival. Hemiarthroplasty was performed for unstable intertrochanteric fractures using a double tapered quadrilateral femoral stem (C2 stem), and the clinical and radiological results were evaluated as a five-year follow-up post-surgery. Materials and Methods: From January 2004 to December 2013, 43 patients (43 hips) who underwent hemiarthroplasty with a C2 stem were enrolled in this study. Their mean age was 78.6 years (range, 70-84 years), and the mean follow-up period was 85.4 months (range, 60-96 months). During the follow-up period, clinical parameters, such as the changes in pain, walking ability, and functional status, were examined. Radiologically, changes in the proximal femur, such as osteoporosis and bone resorption of cortical bone, were noted. Complications that occurred during the follow-up period, such as dislocation and prosthetic features, were also reviewed. Results: Initially, the pain was relieved postoperatively, but it increased four years after surgery. The walking ability was reduced by two steps in nine patients after 60 months, and the Harris hip score was reduced significantly postoperatively after two to three years. Radiologically, cortical osteoporosis occurred in 14 patients. Five patients developed cortical bone resorption. Four of them showed nonunion of the trochanteric fracture fragments, and three of them suffered reverse oblique fractures. Conclusion: Careful selection considering the general health condition and remaining lifespan of the patient would be necessary for primary hip hemiarthroplasty using a 3C type cementless femoral stem for unstable intertrochanteric fractures in elderly patients with osteoporosis.

목적: 고령의 환자에게 발생한 대퇴골 전자간 불안정성 골절에 대하여 관혈적 정복 및 내고정 이외의 다른 대안으로 고관절 반치환술이 선택적으로 사용되고 있다. 최근 의료 시스템과 기술의 발달로 대퇴골 전자간 골절 후 생존율이 높아지면서 중장기 이상의 기간을 고려한 대퇴 스템의 선택이 필요하다. 이에 저자들은 이중으로 가늘어 지는 직각 단면의 대퇴 스템(C2 stem)을 이용하여 불안정성 전자간 골절에 고관절 반치환술을 시행하고 5년 이상 추시한 환자에 대하여 그 임상적 방사선적 결과를 알아보고자 하였다. 대상 및 방법: 2004년 1월부터 2013년 12월까지 대퇴골 전자간 불안정성 골절에 대하여 C2 스템으로 고관절 반치환술을 시행한 43명의 환자(43 고관절)를 대상으로 하였다. 평균 연령은 78.6세(70-84세), 평균 추시 기간은 85.4개월(60-96개월)이었다. 추시 기간 동안 임상적으로는 통증, 보행 능력, 고관절 기능의 변화를 알아보았고, 방사선적으로는 피질골의 골다공증과 골 흡수 등 근위 대퇴골의 변화를 알아보았으며, 탈구와 인공 관절 주변 골절 등 추시 기간 중 발생한 합병증에 대하여 알아보았다. 결과: 통증은 수술 후 유의하게 감소하였는데, 수술 후 4년부터 증가하였고 수술 후 60개월에 보행 능력 평가에서 9예의 환자가 두 단계 보행 능력이 감소하였으며 Harris 고관절 점수는 수술 후 2년부터 3년 사이에 유의하게 감소하였다. 방사선적으로 피질골 골다공증은 14예 발생하였는데, 이 중 5예의 환자가 피질골 흡수 현상으로 진행하였다. 피질골 흡수 현상을 보인 5예 중 4예는 전자부 골절편이 불유합 된 경우였고, 3예는 역사상 골절인 경우였다. 결론: 골다공증을 동반한 고령의 환자에게 발생한 불안정성 전자간 골절에 3C 형태의 무시멘트 스템을 이용하여 고관절 반치환술을 일차로 시행하는 경우 환자의 건강 상태와 잔여 수명을 고려하여 주의 깊은 선택이 필요할 것으로 생각된다.

Keywords

References

  1. Cooper C, Campion G, Melton LJ 3rd. Hip fractures in the elderly: a world-wide projection. Osteoporos Int. 1992;2:285-9. https://doi.org/10.1007/BF01623184
  2. Rainfray M, Dehail P, Salles N. [Complications of immobility and bed rest. Prevention and management]. Rev Prat. 2007;57:671-6. French.
  3. Park MS, Cho HM, Kim JH, Shin WJ. Cementless bipolar hemiarthroplasty using a rectangular cross-section stem for unstable intertrochanteric fractures. Hip Int. 2013;23:316-22. https://doi.org/10.5301/hipint.5000024
  4. Andress HJ, Kahl S, Kranz C, Gierer P, Schurmann M, Lob G. Clinical and finite element analysis of a modular femoral prosthesis consisting of a head and stem component in the treatment of pertrochanteric fractures. J Orthop Trauma. 2000;14:546-53. https://doi.org/10.1097/00005131-200011000-00005
  5. Talmo CT, Bono JV. Treatment of intertrochanteric nonunion of the proximal femur using the S-ROM prosthesis. Orthopedics. 2008;31:125. https://doi.org/10.3928/01477447-20080201-35
  6. Kayali C, Agus H, Ozluk S, Sanli C. Treatment for unstable intertrochanteric fractures in elderly patients: internal fixation versus cone hemiarthroplasty. J Orthop Surg (Hong Kong). 2006;14:240-4. https://doi.org/10.1177/230949900601400302
  7. Lee YK, Won H, Roa KRU, Ha YC, Koo KH. Bipolar hemiarthroplasty using microarc oxidation-coated cementless stem in patients with unstable intertrochanteric fracture. J Orthop Surg (Hong Kong). 2019;27:2309499019847815.
  8. Lee YK, Ha YC, Chang BK, Kim KC, Kim TY, Koo KH. Cementless bipolar hemiarthroplasty using a hydroxyapatite-coated long stem for osteoporotic unstable intertrochanteric fractures. J Arthroplasty. 2011;26:626-32. https://doi.org/10.1016/j.arth.2010.05.010
  9. Lee YK, Joung HY, Kim SH, Ha YC, Koo KH. Cementless bipolar hemiarthroplasty using a micro-arc oxidation coated stem in patients with displaced femoral neck fractures. J Arthroplasty. 2014;29:2388-92. https://doi.org/10.1016/j.arth.2014.04.020
  10. Dorr LD, Faugere MC, Mackel AM, Gruen TA, Bognar B, Malluche HH. Structural and cellular assessment of bone quality of proximal femur. Bone. 1993;14:231-42. https://doi.org/10.1016/8756-3282(93)90146-2
  11. Cho HM, Lee K, Min W, et al. Survival and functional outcomes after hip fracture among nursing home residents. J Korean Med Sci. 2016;31:89-97. https://doi.org/10.3346/jkms.2016.31.1.89
  12. Harris WH. Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am. 1969;51:737-55. https://doi.org/10.2106/00004623-196951040-00012
  13. Brooker AF, Bowerman JW, Robinson RA, Riley LH Jr. Ectopic ossification following total hip replacement. Incidence and a method of classification. J Bone Joint Surg Am. 1973;55:1629-32. https://doi.org/10.2106/00004623-197355080-00006
  14. Guzon-Illescas O, Perez Fernandez E, Crespi Villarias N, et al. Mortality after osteoporotic hip fracture: incidence, trends, and associated factors. J Orthop Surg Res. 2019;14:203. https://doi.org/10.1186/s13018-019-1226-6
  15. Frost SA, Nguyen ND, Center JR, Eisman JA, Nguyen TV. Excess mortality attributable to hip-fracture: a relative survival analysis. Bone. 2013;56:23-9. https://doi.org/10.1016/j.bone.2013.05.006
  16. Khanuja HS, Vakil JJ, Goddard MS, Mont MA. Cementless femoral fixation in total hip arthroplasty. J Bone Joint Surg Am. 2011;93:500-9. https://doi.org/10.2106/JBJS.J.00774
  17. Janda W, Hubl M, Stockl B, Thaler M, Labek G. Performance of the Zweymuller total hip arthroplasty system: a literature review including arthroplasty register data. Eur Orthop Traumatol. 2010;1:9-15. https://doi.org/10.1007/s12570-010-0004-z
  18. Mueller LA, Nowak TE, Haeberle L, et al. Progressive femoral cortical and cancellous bone density loss after uncemented tapered-design stem fixation. Acta Orthop. 2010;81:171-7. https://doi.org/10.3109/17453671003635843
  19. Affatato S, Comitini S, Fosco M, Toni A, Tigani D. Radiological identification of Zweymuller-type femoral stem prosthesis in revision cases. Int Orthop. 2016;40:2261-9. https://doi.org/10.1007/s00264-016-3141-3
  20. Sangiorgio SN, Ebramzadeh E, Borkowski SL, Oakes DA, Reid JJ, Bengs BC. Effect of proximal femoral bone support on the fixation of a press-fit noncemented total hip replacement femoral component. J Appl Biomater Funct Mater. 2013;11:e26-34.
  21. Kang JS, Ko SH, Na Y, Youn YH. Clinical and radiological outcomes of rectangular tapered cementless stem according to proximal femoral geometry in elderly Asian patients. Hip Pelvis. 2019;31:224-31. https://doi.org/10.5371/hp.2019.31.4.224
  22. Engh CA, McGovern TF, Bobyn JD, Harris WH. A quantitative evaluation of periprosthetic bone-remodeling after cementless total hip arthroplasty. J Bone Joint Surg Am. 1992;74:1009-20. https://doi.org/10.2106/00004623-199274070-00007
  23. Engh CA, O'Connor D, Jasty M, McGovern TF, Bobyn JD, Harris WH. Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses. Clin Orthop Relat Res. 1992;285:13-29.
  24. Paprosky WG, Greidanus NV, Antoniou J. Minimum 10-year-results of extensively porous-coated stems in revision hip arthroplasty. Clin Orthop Relat Res. 1999;369:230-42. https://doi.org/10.1097/00003086-199912000-00024
  25. Delaunay C, Bonnomet F, North J, Jobard D, Cazeau C, Kempf JF. Grit-blasted titanium femoral stem in cementless primary total hip arthroplasty: a 5- to 10-year multicenter study. J Arthroplasty. 2001;16:47-54. https://doi.org/10.1054/arth.2001.17940
  26. Delaunay C, Kapandji AI. Survival analysis of cementless grit-blasted titanium total hip arthroplasties. J Bone Joint Surg Br. 2001;83:408-13. https://doi.org/10.1302/0301-620X.83B3.0830408