DOI QR코드

DOI QR Code

Thermal Imagery-based Object Detection Algorithm for Low-Light Level Nighttime Surveillance System

저조도 야간 감시 시스템을 위한 열영상 기반 객체 검출 알고리즘

  • Received : 2019.01.08
  • Accepted : 2020.04.29
  • Published : 2020.06.30

Abstract

In this paper, we propose a thermal imagery-based object detection algorithm for low-light level nighttime surveillance system. Many features selected by Haar-like feature selection algorithm and existing Adaboost algorithm are often vulnerable to noise and problems with similar or overlapping feature set for learning samples. It also removes noise from the feature set from the surveillance image of the low-light night environment, and implements it using the lightweight extended Haar feature and adaboost learning algorithm to enable fast and efficient real-time feature selection. Experiments use extended Haar feature points to recognize non-predictive objects with motion in nighttime low-light environments. The Adaboost learning algorithm with video frame 800*600 thermal image as input is implemented with CUDA 9.0 platform for simulation. As a result, the results of object detection confirmed that the success rate was about 90% or more, and the processing speed was about 30% faster than the computational results obtained through histogram equalization operations in general images.

본 논문에서는 저조도 야간 감시 시스템을 위한 열영상 기반의 객체 검출 알고리즘을 제안한다. 기존 Adaboost를 이용한 Haar 특징점 선택 알고리즘은 학습 샘플에 대한 유사하거나 중복되는 특징점의 선택 문제와 잡음에 취약한 경우가 많았다. 또한 저조도 야간 환경의 감시 영상에서 얻어지는 잡음을 특징점 세트에서 제거하고 빠르고 효율적인 실시간 특징점 선택이 이루어질 수 있게 가벼운 확장형 Haar 특징점과 Adaboost 학습 알고리즘을 사용하여 구현하였다. 야간 저조도 환경에서 움직임이 있는 비예측 객체를 인식하기 위하여 열영상으로 촬영된 이미지에 확장 Haar 특징점을 사용하여 객체를 인식한다. 비디오 프레임 800*600 크기의 열영상 이미지를 입력으로 하는 Adaboost 학습 알고리즘을 CUDA 9.0 플랫폼으로 구현하여 시뮬레이션을 시행한다. 그 결과 객체 검출 결과는 성공률이 약 90% 이상임을 확인하였고, 이는 일반영상에 히스토그램 이퀄라이징 연산을 거쳐 얻어진 연산 결과보다 약 30% 더 빠른 처리 속도를 얻을 수 있었다.

Keywords

References

  1. Ahonen T., Hadid A. and Pietikaninen M.(2006), "Face description with local binary patterns: Application to face recognition," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 28, no. 12, Dec., pp.2037-2041. https://doi.org/10.1109/TPAMI.2006.244
  2. Amini M. R.(2015), "AdaBoost Distribution 1.0," Universite Grenoble Alpes, July, p.13.
  3. Messom C. H. and Barczak A. L. C.(2006), "Fast and Efficient Rotated Haar-like Features Using Rotated Integral Images," CVPR, ACRA2006, pp.1-6.
  4. Patel1 H. A. and Thakore D. G.(2013), "Moving Object Tracking Using Kalman Filter," IJCSMC, vol. 2, Issue 4, April, pp.326-332.
  5. Silva C., Bouwmans T. and Frelicot C.(2015), "An eXtended Center-Symmetric Local Binary Pattern for Background Modeling and Subtraction in Videos," Proceedings of the 10th International Conference on Computer Vision Theory and Applications, vol. 2, pp.395-402.
  6. Wang X.(2009), "An HoG-LBP human detector with partial occlusion handling," Proceedings of International Conference on Computer Vision, pp.32-39.
  7. Wong W. K. et al.(2009), "An Effective Surveillance System Using Thermal Camera," International Conference on Signal Acquisition and Processing, pp.13-17.
  8. Zhang X., Gonnot T. and Saniie J.(2017), "Real-Time Face Detection and Recognition in Complex Background," Journal of Signal and Information Processing, Aug., pp.99-112.
  9. Zhong G.(2001), Object Detection and Tracking in Video, Advances in Internet based systems and Applications.