DOI QR코드

DOI QR Code

경사도 에너지 소모량을 고려한 자전거 경로 선택 모형 개발

Development of Bicyclists' Route Choice Model Considering Slope Gradient

  • 이규진 (아주대학교 TOD기반지속가능도시교통연구센터) ;
  • 류인곤 (아주대학교 TOD기반지속가능도시교통연구센터)
  • Lee, Kyu-Jin (TOD-based Sustainable Urban/Transportation Research Center, Univ. of Ajou) ;
  • Ryu, Ingon (TOD-based Sustainable Urban/Transportation Research Center, Univ. of Ajou)
  • Received : 2020.01.07
  • Accepted : 2020.05.19
  • Published : 2020.06.30

Abstract

중앙정부 및 지방자치단체는 자전거 이용 활성화를 위해 자전거 도로 및 공공 자전거 대여소의 인프라를 지속적으로 확충하고 있다. 이와 같은 인프라 공급과 더불어 이용 편의성 제고정책을 병행한다면, 자전거 이용은 더욱 활성화될 수 있다. 본 연구는 자전거 이용 편의 측면에서 자전거 경사를 고려한 경로 안내 알고리즘을 제안하고 있다. 구체적으로는 경사도와 심장 박동수 측정을 통해, 경사도를 고려한 자전거 주행자의 에너지 소모량 추정 모형을 구축하였고, 경사도에 기인한 에너지 소모량을 최소화할 수 있는 자전거 경로 선택 모형을 제안하고 있다. 연구결과, 평지 구간에서는 주행거리와 속도가 증가할수록 에너지 소모량은 증가하며, 내리막 구간에서는 경사도가 크고 속도가 높을수록 더 적은 에너지가 소요되는 것으로 확인되었다. 본 모형을 모의실험 구간에 적용하여 에너지 소모량을 추정한 결과, 본 연구모형의 RMSE는 경사도가 미 반영된 모형보다 41% 우수하였다. 본 연구결과는 자전거 주행로의 종단과 횡단을 함께 고려한 자전거 인프라 계획과 자전거 경로 안내 시스템의 알고리즘에 적용될 수 있을 것으로 기대된다.

Although the government and local governments devote efforts to activate bicycles, they only access to the supply infrastructure such as bike lanes and the public bicycle rental service centers without considering the measures to overcome the geographical constraints of slope. Therefore, this study constructs bicyclist's energy consumption estimation model through experimental methods of slope gradient and heart rate measurement and suggest the bicycle route choice model which could minimize the energy by the slope gradient. After calculating the RMSE of the estimated energy consumption by applying this model to the simulation section, it is confirmed to be 41% better than the model which does not reflect slope gradient. The results of this study are expected to be applied to the bicycle infrastructure planning that considers both longitude and transverse of bike lanes and the algorithm of bicycle route guidance system in the future.

Keywords

References

  1. Baik S. H.(2012), A Study on Bicycle Route Selection using Optimal Path Search, Chonnam National University.
  2. Baik S. H., Han D. Y. and Jin H. S.(2011), "The Bicycle Road Route Selection which Considers the Slope Standard of the Bicycle Road," Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, vol. 29, no. 6, pp.553-559. https://doi.org/10.7848/ksgpc.2011.29.6.553
  3. Birk M., Voros K., Rose M., Geller R., Igarta D. and Patterson B.(2010), "Cycle zone analysis: An innovative approach to bicycle planning," In 89th Annual Meeting of the Transportation Research Board, Washington, DC.
  4. Broach J., Gliebe J. and Dill J.(2011), "Bicycle route choice model developed using revealed preference GPS data," In 90th Annual Meeting of the Transportation Research Board, Washington, DC.
  5. Charlton B., Sall E., Schwartz M. and Hood J.(2011), "Bicycle route choice data collection using GPSenabled smartphones," In 90th Annual Meeting of the Transportation Research Board, Washington, DC.
  6. Cho H. J.(2010), A Study on the Guideline for Level of Service by Vertical Grade for Bikeways, Seoul National University.
  7. Chung T. H., Cho Y. S. and Kang K. W.(2011), "An Evaluation for the Investment Priority of Bicylce Road: A Case Study of Osan City," Gyeonggi Research Institute GRI Review, vol. 13, no. 1, pp.234-252.
  8. Jain H. and Tiwari G.(2011), "Captive Cyclists vs. Potential Users: Route Choice Factors in Indian Context," In 90th Annual Meeting of the Transportation Research Board, Washington, DC.
  9. Jung J.(2005), Analysis of Intensity and Energy expenditure Poom-sae of Taekwondo Practice, Graduate School, Ulsan University, Ulsan Korea, pp.1-10.
  10. Kim S. S.(2011), A Study on Factors of the Influence of Cycling Environments on Bicycle User Perceptions and Route Choice, Pusan National University.
  11. Kim S. S., Song K. W., Jung H. Y. and Ha S. W.(2011), "A Study on the Effect of Bicycling Environment in the Route choice of Bicycle Commuters," Journal of the Korea Planners Association, vol. 46, no. 2, pp.223-233.
  12. LeClerc M.(2002), Bicycle planning in the City of Portland: Evaluation of the City's Bicycle Master Plan and statistical analysis of the relationship between the City's bicycle network and bicycle commute, School of Urban Studies and Planning, Portland State University, Portland, OR.
  13. Lee H. K.(2009), "The Study of HR and Energy Expenditure Change according to Walking Types," The Korea Contents Association, vol. 7, no. 1, pp.405-409.
  14. Lee K. W.(2011). Bike route selection methods considering user characteristics using GIS, Incheon National University.
  15. Ministry of Public Administration and Security and Ministry of Land, Transport and Maritime Affairs(2010), Biking Facilities Installation and Management Guidelines.
  16. Park J. Y.(2003), Prediction of energy expenditure during exercise through heart rate in young adult, Seoul National University.
  17. Park Y. S.(2011), Design Improvement and Information Service of Bike Way Considering Environmental Factor, Incheon National University.
  18. Rodriguez D. A. and Joo J.(2004), "The relationship between non-motorized mode choice and the local physical environment," Transportation Research Part D: Transport and Environment, vol. 9, no. 2, pp.151-173. https://doi.org/10.1016/j.trd.2003.11.001
  19. Sa K. and Lee S.(2018), "Analysis of Physical Characteristics Affecting the Usage of Public Bike in Seoul, Korea," Journal of Korea Planning Association, vol. 53, no. 6, pp.39-59. https://doi.org/10.17208/jkpa.2018.11.53.6.39
  20. Zimmermann M., Mai T. and Frejinger E.(2017), "Bike route choice modeling using GPS data without choice sets of paths," Transportation Research Part C: Emerging Technologies, vol. 75, pp.183-196. https://doi.org/10.1016/j.trc.2016.12.009