Abstract
Unlike the past, which was limited to terrestrial broadcasts, many dramas are currently being broadcast on cable channels and the Internet web. After watching the drama, viewers actively express their opinions through reviews and studies related to the analysis of these reviews are actively being conducted. Due to the nature of the drama, the genre is not clear, and due to the various age groups of viewers, reviews and ratings from other viewers help to decide which drama to watch. However, since it is difficult for viewers to check and analyze many reviews individually, a data analysis technique is required to automatically analyze them. Accordingly, this paper classifies the topics of reviews that have an important influence on drama selection and reclassifies them into semantic topics according to the similarity of words. In addition, we propose a model that classifies reviews into sentences according to semantic topics and sentiment analysis through sentiment words.
지상파에 한정되어 방영되었던 과거와는 달리 현재는 케이블 채널과 인터넷 웹에서도 수많은 드라마가 방영되고 있다. 드라마를 보고난 후 시청자들은 리뷰를 통해 적극적으로 자신의 의견을 표현하고 이러한 리뷰의 분석에 관련된 연구들이 활발하게 진행되고 있다. 드라마의 특성상 장르가 뚜렷하지 않고 시청자의 다양한 연령층으로 인해 다른 시청자들의 리뷰와 평가는 어떤 드라마를 볼 것인지 결정하는데 도움이 된다. 하지만 많은 리뷰를 시청자가 일일이 확인하고 분석하는 것은 어렵기 때문에 자동으로 분석하기위한 데이터 분석 기법이 필요하다. 이에 본 논문에서는 드라마 선택에 중요한 영향을 미치는 리뷰의 토픽을 분류하고 단어의 의미 유사도에 따라 의미적 토픽으로 재분류한다. 그리고 리뷰를 의미적 토픽에 따른 문장으로 분류한 다음 감성단어를 통해 감성을 분석하는 모델을 제안한다.