DOI QR코드

DOI QR Code

A Survey on Face-based Cryptographic Key Generation

  • Received : 2019.09.02
  • Accepted : 2019.11.06
  • Published : 2020.06.30

Abstract

Derivation cryptographic keys from human biometrics opens a new promising research area when it can be used efficiently for not only verification or recognition tasks, but also symmetric-key based applications. Among existing biometric traits, face is considered as the most popular biometrics since facial features are informative and discriminative. In this paper, we present a comprehensive survey of Face-based key generation (FKGS). First, we summarize the trend of FKGS researches and sum up the methods which play important roles in the proposed key generation systems. Then we present the evaluation and the general performance analysis; from that, we give a discussion about the advantages and disadvantages of surveyed studies to clarify the fundamental requirements and the main challenges when implementing FKGS in practice. Finally, an outlook on future prospects is given.

Keywords

References

  1. M. A. Dabbah; W. L. Woo; S. S. Dlay; "Secure Authentication for Face Recognition," 2007 IEEE Symposium on Computational Intelligence in Image and Signal Processing, Honolulu, HI, 2007, pp.121-126
  2. R. M. Bolle; J. H. Connell; N. K. Ratha; "Biometric perils and patches," Pattern Recognition, vol.35, no.12, pp.2727-2738, 2002 https://doi.org/10.1016/S0031-3203(01)00247-3
  3. M. Gomez-Barrero; J. Galbally; C. Rathgeb; C. Busch; "General Framework to Evaluate Unlinkability in Biometric Template Protection Systems," IEEE Transactions on Information Forensics and Security, vol.13, no.6, pp.1406-1420, 2018 https://doi.org/10.1109/TIFS.2017.2788000
  4. N. K. Ratha; J. H. Connell; R. M. Bolle; "Enhancing security and privacy in biometrics-based authentication systems," IBM Systems Journal, vol.40, no.3, pp.614-634, 2001 https://doi.org/10.1147/sj.403.0614
  5. A. B. J. Teoh; Y. W. Kuan; S. Lee; "Cancellable biometrics and annotations on BioHash," Pattern Recognition, vol.41, no.6, pp.2034-2044, 2008 https://doi.org/10.1016/j.patcog.2007.12.002
  6. Y. WANG; K.N. Plataniotis; "Fuzzy Vault for Face Based Cryptographic Key Generation," 2007 Biometrics Symposium. IEEE, 2007. pp.1-6, 2007
  7. A. Anees; Y. P. Chen; "Discriminative binary feature learning and quantization in biometric key generation," Pattern Recognition, vol.77, pp. 289-305, 2018 https://doi.org/10.1016/j.patcog.2017.11.018
  8. R. K. Pandey; Y. Zhou, B. U. Kota and V. Govindaraju, "Deep Secure Encoding for Face Template Protection," 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Las Vegas, NV, pp.77-83, 2016
  9. Y. Ma; L. Wu; X. Gu; J. He; Z. Yang; "A Secure Face-Verification Scheme Based on Homomorphic Encryption and Deep Neural Networks," IEEE Access, 5, pp.16532-16538, 2017 https://doi.org/10.1109/ACCESS.2017.2737544
  10. A. K. Jindal; S. Chalamala; S. K. Jami; "Face Template Protection Using Deep Convolutional Neural Network," IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, pp.575-5758, 2018
  11. D. D. Mohan; N. Sankaran; S. Tulyakov; S. Setlur; V. Govindajaru; "Significant Feature Based Representation for Template Protection," IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, 2019
  12. C. Rathgeb; A. Uhl; "A survey on biometric cryptosystems and cancelable biometrics," EURASIP Journal on Information Security, 2011
  13. Y. Dodis; L. Reyzin; A. Smith; "Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data," Advances in Cryptology (EUROCRYPT), pp. 523-540, 2004
  14. A. Juels; M. Wattenberg; "A Fuzzy Commitment Scheme," Proc. of the 6th ACM Conference on Computer and Communications Security (CCS), pp. 28-36, 1999
  15. A. Juels; M. Sudan; "A Fuzzy Vault Scheme," Designs, Codes and Cryptography, vol.38, no.2, pp.237-257, 2006 https://doi.org/10.1007/s10623-005-6343-z
  16. M. Turk; A. Pentland; "Eigenfaces for recognition," Journal of Cognitive Neuroscience, vol.3, no.1, pp.71-86, 1991 https://doi.org/10.1162/jocn.1991.3.1.71
  17. P.J. Phillips; H. Wechsler; J. Huang; P. J. Rauss; "The FERET database and evaluation procedure for face-recognition algorithms," Image and Vision Computing, vol.16, no.5, pp. 295-306, 1998 https://doi.org/10.1016/S0262-8856(97)00070-X
  18. P. Wang; M. B. Green; Q. Ji; J. Wayman; "Automatic Eye Detection and Its Validation," IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), San Diego, CA, pp.164-164, 2005
  19. ATT Laboratories Cambridge, ORL face database, http://cam-orl.co.uk/facedatabase.html (accessed Apr., 03, 2020).
  20. A. B. J. Teoh; S. Cho; J. Kim; "Random permutation Maxout transform for cancellable facial template protection," Multimedia Tools and Applications, vol.77, no.21, pp.27733-27759, 2018 https://doi.org/10.1007/s11042-018-5956-y
  21. Y. Taigman; M. Yang; M. Ranzato; L. Wolf; "DeepFace: Closing the Gap to Human-Level Performance in Face Verification," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, pp.1701-1708, 2014
  22. F. Schroff; D. Kalenichenko; J. Philbin; "FaceNet: A unified embedding for face recognition and clustering," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, pp.815-823, 2015
  23. S. Xie; R. Girshick; P. Dollar; Z. Tu; K. He; "Aggregated Residual Transformations for Deep Neural Networks," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, pp.5987-5995, 2017
  24. F. S. Samaria; A. C. Harter; "Parameterisation of a stochastic model for human face identification," Proc. of IEEE Workshop on Applications of Computer Vision, Sarasota, FL, USA, pp.138-142, 1994
  25. D. Hond; L. Spacek "Distinctive Descriptions for Face Processing," Proc. of the 8th British Machine Vision Conference (BMVC), Colchester, England, pp. 320-329, 1997
  26. E. Learned-Miller; G. B. Huang; A. R. Chowdhury; H. Li; G. Hua; "Labeled Faces in the Wild: A Survey," Advances in Face Detection and Facial Image Analysis, pp.189-248, 2016
  27. A. S. Georghiades; P. N. Belhumeur; D. J. Kriegman; "From few to many: illumination cone models for face recognition under variable lighting and pose," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, no.6, pp.643-660, 2001 https://doi.org/10.1109/34.927464
  28. A.M. Martinez; R. Benavente; "The AR face database," CVC Tech Rep, 24, 1998
  29. T. Sim; S. Baker; M. Bsat; "The CMU Pose, Illumination, and Expression (PIE) Database," Proc. of IEEE International Conference on Automatic Face and Gesture Recognition, pp. 53, 2002
  30. R. Gross; I. Matthews; J. Cohn; T. Kanade; S. Baker; "Multi-PIE," IEEE International Conference on Automatic Face and Gesture Recognition, Amsterdam, pp.1-8, 2008
  31. D. Yi; Z. Lei; S. Liao; S. Z. Li; ''Learning face representation from scratch," (2014)https://arxiv.org/abs/1411.7923 (accessed Apr. 20, 2020).
  32. C. E. Thomaz; G. A. Giraldi; "A new ranking method for principal components analysis and its application to face image analysis." Image and Vision Computing, vol.28, no.6, pp.902-913, 2010 https://doi.org/10.1016/j.imavis.2009.11.005
  33. P. J. Phillips; H. Moon; S. A. Rizvi; P. J. Rauss; "The FERET evaluation methodology for face-recognition algorithms," IEEE Transactions on pattern analysis and machine intelligence, vol.22, no.10, pp.1090-1104, 2000 https://doi.org/10.1109/34.879790
  34. A. Bansal; A. Nanduri; C. D. Castillo; R. Ranjan; R. Chellappa; "Umdfaces: An annotated face dataset for training deep networks," Biometrics IEEE International Joint Conference (IJCB), pp. 464-473, 2017
  35. B. F. Klare; B. Klein; E. Taborsky; A. Blanton; J. Cheney; K. Allen; P. Grother; A. Mah; A. K. Jain; "Pushing the Frontiers of Unconstrained Face Detection and Recognition: IARPA Janus Benchmark A," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015
  36. B. Maze; J. Adams; J. A. Duncan; N. Kalka; T. Miller; C. Otto; A. K. Jain; W. T. Niggel; J. Anderson; J. Cheney; P. Grother; "IARPA Janus Benchmark - C: Face Dataset and Protocol," International Conference on Biometrics (ICB), Gold Coast, QLD, pp.158-165, 2018
  37. C. J. Ng; A. B. J. Teoh; C. Y. Low; "DCT based region log-tiedrank covariance matrices for face recognition," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.2099-2103, 2016
  38. J. Wang; T. Zhang; J. Song; N. Sebe; H. T. Shen; "A Survey on Learning to Hash," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.40, no.4, pp.769-790, 2018 https://doi.org/10.1109/TPAMI.2017.2699960
  39. Q. Cao; L. Shen; W. Xie; O. M. Parkhi; A. Zisserman; "VGGFace2: A dataset for recognising face across pose and age," International Conference on Automatic Face and Gesture Recognition, 2018
  40. V. Talreja; M. Valenti; N. Nasrabadi; "Zero-Shot Deep Hashing and Neural Network Based Error Correction for Face Template Protection," IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), 2019
  41. WVU multimodal dataset, http://biic.wvu.edu/ (accessed Apr., 20, 2020).
  42. Lam Tran Ha; Deokjai Choi; "Biometrics-based Key Generation Research : Accomplishments and Challenges," Smart Media Journal, vol.6, no.2, pp.15-25, 2017
  43. Hong Tai Tran; In Seop Na; Young Chul Kim; Soo-Hyung Kim; "Human Face Tracking and Modeling using Active Appearance Model with Motion Estimation," Smart Media Journal, vol.6, no.3, pp.49-56, 2017
  44. Do Nhu Tai; Soo-Hyung Kim; Guee-Sang Lee; Hyung-Jeong Yang; In-Seop Na; A-Ran Oh; "Tracking by Detection of Multiple Faces using SSD and CNN Features," Smart Media Journal, vol.7, no.4, pp.61-69, 2018 https://doi.org/10.30693/SMJ.2018.7.4.61
  45. A. K. Jindal; S. Rao Chalamala; S. K. Jami; "Securing Face Templates using Deep Convolutional Neural Network and Random Projection," 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 2019, pp. 1-6