DOI QR코드

DOI QR Code

Is Heart Rate Measured by Smartwatch during Exercise Reliable? Analysis of Correlation and Agreement Between Heart Rates of Polar and Smartwatch

운동 중 스마트워치 심박수 믿을 만한가? 폴라와 스마트워치 심박수 간 상관과 일치도 분석

  • Kim, Ji-Hye (Department of Physical Education, University of Ulsan) ;
  • Lee, Jung-Lyeon (Department of Physical Education, University of Ulsan) ;
  • Woo, Min-Jung (School of Sports and Exercise Science, University of Ulsan)
  • Received : 2020.04.07
  • Accepted : 2020.06.20
  • Published : 2020.06.28

Abstract

The purpose of this study is to investigate the correlation and agreement between heart rates of Polar heart rate monitor and a smartwatch in order to confirm the accuracy of heart rate measured by the smartwatch. Heart rates of fifty college students were measured for a total of 12 minutes under four conditions: rest, walk, Zumba, and cycle. As a result of correlation and agreement analysis between heart rates of the two devices, correlation coefficient (r) was 0.995 at rest, 0.991 at walk, 0.923 at Zumba, 0.932 at cycle, and Bland-Altman ratio (BA ratio) was 0.02 at rest, 0.03 at walk, 0.06 at Zumba, 0.04 at cycle. Heart rate from smartwatch showed high correlation and agreement with heart rate from Polar in all conditions, representing that smartwatch can be considered an reliable apparatus to measure hear rate.

본 연구의 목적은 스마트워치에서 측정된 심박수의 정확도 확인을 위해, 폴라 심박수와 스마트워치 심박수 간 상관과 일치도를 조사하는 것이다. 대학생 남자 27명(22.41±4.29세), 여자 23명(22.48±6.33세)을 대상으로 스마트워치와 폴라를 착용시킨 뒤, 휴식, 걷기, 줌바, 사이클 네 가지 조건에서 각 조건별 3분씩 총 12분간 심박수가 측정되었고, 두 기기 간 상관과 일치도를 분석하였다. 분석결과, 상관계수(r)가 휴식 0.995, 걷기 0.961, 줌바 0.923, 사이클 0.932로 모든 운동 조건에서 폴라와 스마트워치 간 유의하고 높은 상관관계가 나타났다. BA ratio 값은 휴식 0.02, 걷기 0.03, 줌바 0.06, 사이클 0.04로 폴라와 스마트워치 간 심박수의 일치도가 높은 것으로 나타났다. 종합적으로 스마트워치의 심박수는 모든 조건에서 폴라와 높은 상관과 일치도를 보였다. 따라서 본 연구에서 사용된 스마트워치는 스포츠 현장에서 폴라를 대체할 수 있는 심박수 측정도구로 사용가능 할 것으로 보인다.

Keywords

References

  1. D. H. Kim. (2008). The Meta-analysis on exercise program effect, Doctoral dissertation, Chungang Graduate University, Seoul.
  2. Korean Statistical Information Service. (2018). National Life Sports Survey: Participation rate and frequency of regular sports activities. Name of Web Site. http://kosis.kr
  3. Korean Statistical Information Service. (2016). National Living Sports Participation Survey: Effects of Physical Education Activities. Name of Web Site. http://kosis.kr
  4. D. P. Swain & B. A. Franklin. (2002). VO2 Reserve and the Minimal Intensity for Improving Cardiorespiratory Fitness. Medicine and Science in Sports and Exercise, 34(1), 152-157. DOI : 10.1097/00005768-200201000-00023
  5. G. R. Yeom, J. S. Lee, J. Y. Jang & J. D. Joo. (2017). Treadmill control system based on heart rate maintenance and customized exercise intensity setting. The HCI Society of Korea, 2, 342-345.
  6. Y. J. Kim. (2011). Moderate to High intense exercise prescriptions using Treadmill stress testaffect physical response according to exercise types. Korea Sport Society, 9(3), 579-590.
  7. W. J. Yoon. (2011). Optimization study for heart rate detection performance improvement in a wearable ECG system. Master dissertation, Yonsei University, Seoul.
  8. M. R. Esco, M. S. Olson, H. N. Williford, D. L. Blessing, D. Shannon & P. Grandjean. (2010). The relationship between resting heart rate variability and heart rate recovery. Clinical Autonomic Research, 20(1), 33-38. DOI :10.1007/s10286-009-0033-2
  9. M. Weippert, M. Kumar, S. Kreuzfeld, D. Arndt, A. Rieger & R. Stoll. (2010). Comparison of three mobile devices for measuring R-P intervals and heart rate variability : Polar S810i, Suunto t6 and an ambulatory ECG system. European Journal of Applied Physiology, 109(4), 779-786. DOI :10.1007/s00421-010-1415-9.
  10. S. Gillinov et al. (2017). Variable Accuracy of Wearable Heart Rate Monitors during Aerobic Exercise. Medicine and Science in Sports and Exercise, 49(8), 1697-703. DOI : 10.1249/MSS.0000000000001284
  11. C. J. Kim & J. H. Woo. (2018). Heart rate variability, pulse rate variability, smart watch, short heart rate variability, deep breathing test. Journal of Biomedical Engineering Research, 39(2), 87-93. DOI : dx.10.9718/JBER.2018.39.2.87
  12. J. S. Yoo, J. W. Lee & K. C. Kim. (2016, June). A Study on the Security Vulnerabilities of Smart Watch as a Wearable Device. Proceedings of Symposium of the Korean Institute of communications and Information Sciences, (pp. 119-120). Jeju : ICC.
  13. S. C. Lim. (2017). A Study on the Analysis of Technology and Service Issues for Wearable Devices and Future Development Direction, The Journal of Korean Institute of Next Generation Computing, 13(4), 81-89.
  14. S. Y. Nam. (2015). PPG Implementation of PPG Signal Measuremnt System and Comparative Analysis of PPG Signal on Palm. Unpublished Master dissertation, Tongmyong University, Busan.
  15. M. S. Shin & Y. J. Lee. (2015). A Study on the Influential Factors of Purchase Intention and Continuance Intention of Wearable Device: Focused on Wrist Wearable Healthcare Device. Master dissertation, Seoul National University of Science and Technology, Seoul. DOI : 10.5392/jkca.2015.15.05.498
  16. S. H. Kim, D. W. Ryoo & C. S. Bae. (2007). Adaptive Noise Cancellation Using Accelerometers for the PPG Signal from Forehead. Conference Proceedings-IEEE Engineering in Medicine Biology Society, 10, 22-26. DOI : 10.1109/IEMBS.2007.4352852
  17. M. P. Wallen, S. R. Gomersall, S. E. Keating, U. Wisloff & J. S. Coombes. (2016). Accuracy of Heart Rate Watches: Implications for Weight Management. PLoS ONE, 11(5), e0154420. DOI : 10.1371/journal.pone.0154420
  18. A. Henriksen et al. (2018). Using Fitness Trackers and Smartwatches to Measure Physical Activity in Research: Analysis of Consumer Wrist-worn Wearables. Journal of Medical Internet Research, 20(3), 110-129. DOI : 10.2196/jmir.9157
  19. D. Laurent, V. Maite, D. B. Ilse & C. Geert. (2017). Validation of three Android Wear smartwatches (Huawei Watch, Polar M600 and Asus Zenwatch 3) and Fitbit Charge for measuring amount of steps and time of moderate-to-vigorous physical activity. 16th Annual meeting of the International Society of Behavioral Nutrition and Physical Activity. Canada : Victoria, BC.
  20. D. Giavarina. (2015). Understanding Bland Altman analysis. Croatian Society of Medical Biochemistry and Laboratory Medicine, 25(2), 141-151. DOI : 10.11613/BM.2015.015
  21. G. P. Luiz & F. J. Luiz. (2008). Comparison of Time‐Domain Short‐Term Heart Interval Variability Analysis Using a Wrist‐Worn Heart Rate Monitor and the Conventional Electrocardiogram. Official Journal of the World Society of Arrhythmias, 32(1), 43-51. DOI : 10.1111/j.1540-8159.2009.02175.x
  22. S. W. Weinschenk, R. D. Beise & J. Lorenz. (2016). Heart rate variability (HRV) in deep breathing tests and 5-min short term recordings: agreement of ear photoplethysmography with ECG measurements, in 343 subjects. European Journal of Applied Physiology, 116(8), 1527-1535. DOI :10.1007/s00421-016-3401-3
  23. H. K. Ra, J. Ahn, H. J. Yoon, D. Yoon, S. H Son & J. Ko. (2017). I am a "Smart" watch, Smart Enough to Know the Accuracy of My Own Heart Rate Sensor. HotMobile '17: Proceedings of the 18th International Workshop on Mobile Computing Systems and Applications. (49-54). USA : CA.