
JKSCI
한국컴퓨터정보학회논문지

Journal of The Korea Society of Computer and Information

Vol. 25 No. 6, pp. 99-107, June 2020

https://doi.org/10.9708/jksci.2020.25.06.099

Study on the Performance Evaluation and Analysis of Mobile Cache Memory

1)Sangmin Lee*, Jongwan Kim**, Ji Young Kim***, Dukshin Oh****

*Researcher, AI⋅Big Data and Software Code Lab, Sahmyook University, Seoul, Korea

**Professor, Smith College of Liberal Arts, Sahmyook University, Seoul, Korea

***Professor, Dept. of Business Administration, Sahmyook University, Seoul, Korea

****Professor, Dept. of Management Information System, Sahmyook University, Seoul, Korea

[Abstract]

In this paper, we analyze the characteristics of mobile cache, which is used to improve the data access

speed when executing applications on mobile devices, and verify the importance of mobile cache through

a cache data access experiment. The mobile device market has grown at a fast pace over the past decade;

however, battery limitations and size, price considerations restrict the usage of fast hardware. Thus, their

performance are supplemented by using a memory buffer structure such as the cache memory. The analysis

mainly focuses on cache size, hierarchical structure of cache, cache replacement policy, and the effect these

features has on mobile performance. For the experimental data, we applied a data set from a

microprocessor system study, originally used to test the cache performance. In the experimental results, the

average data access speed on a mobile device showed a performance improvement of up to 10 times with

the presence of cache memory than without. Accordingly, the cache memory was helpful for the

performance improvement of a mobile device when the specifications were identical.

▸Key words: Cache memory, Mobile cache memory, Cache replacement, First In First Out,

Least Recently Used

[요 약]

본 논문에서는 모바일 기기에서 앱 실행 시 데이터 접근 속도를 향상하기 위해 사용하는 모바일

캐시의 특징을 분석하고 캐시 데이터 접근 실험을 통해 모바일 캐시의 중요성을 검증한다. 지난 10년간

모바일 기기 시장은 빠른 속도로 성장하였지만, 배터리가 제한적이고, 기기의 크기와 가격이 고려돼야

하므로 속도가 빠른 하드웨어를 사용하기 어렵다. 따라서 캐시 메모리와 같이 메모리 완충 구조를

통해 성능을 보완한다. 본 논문의 주요분석 대상은 캐시 메모리 크기, 캐시의 계층구조 그리고 교체방식

과 그에 따른 모바일 성능을 확인한다. 시뮬레이션 데이터는 마이크로프로세서 시스템 연구에서 캐시

성능 확인용으로 사용한 데이터를 사용하였다. 실험결과 모바일 기기에서 캐시 메모리를 사용할 때

데이터에 대한 평균 접근 속도는 캐시 메모리가 없을 때 보다 10배의 성능향상을 보였으며 결과적으로

캐시 메모리는 같은 사양일 때 모바일 기기의 성능향상에 도움이 되는 것으로 나타났다.

▸주제어: 캐시 메모리, 모바일 캐시 메모리, 캐시 교체, 선입선출, 최근 최소 사용

∙First Author: Sangmin Lee, Corresponding Author: Dukshin Oh
 *Sangmin Lee (sangmin010203@gmail.com), AI⋅Big Data and Software Code Lab, Sahmyook University
 **Jongwan Kim (kimj@syu.ac.kr), Smith College of Liberal Arts, Sahmyook University
 ***Ji Young Kim (jyk8591@syu.ac.kr), Dept. of Business Administration, Sahmyook University
 ****Dukshin Oh (ohds@syu.ack.kr), Dept. of Management Information System, Sahmyook University
∙Received: 2020. 03. 31, Revised: 2020. 04. 29, Accepted: 2020. 05. 04.

Copyright ⓒ 2020 The Korea Society of Computer and Information
 http://www.ksci.re.kr pISSN:1598-849X | eISSN:2383-9945

100 Journal of The Korea Society of Computer and Information

I. Introduction

The market for mobile devices such as smartph

ones and tablet PCs has been continuously growing

[1]. Companies have been making efforts to increase

the speed of mobile devices, and lately, the benchmark

score [17] of an octa-core CPU [16] of a mobile device

has become similar to that of the CPU of regular

computers. Since the power consumption, size, and

price of mobile device should be taken into consider

ation [2, 3], high-end devices such as Solid State Drive

(SSD) or double data rate synchronous dynamic ran

dom-access memory (DDR) cannot be used in mobile

devices [3].

When a CPU accesses a data of a main memory

or a main memory accesses a data of a secondary

storage, the difference of speed between the devices

results in a delay. This delay can be overcome by

using a cache memory [4].

Cache can be classified into buffer cache and

CPU cache. The buffer cache mainly reduces the

delay between the main memory and the secondary

storage [3, 5], while the CPU cache reduces the

delay between CPU and main memory [4].

As the size of cache memory increases, cache

gains higher probability for containing the data

that CPU requires [5]. Therefore, the performance

of mobile devices improves by expanding the cache

memory (e.g., using large on-chip cache). However,

there is a trade-off relationship between the cache

speed and cache size [6] since it gradually takes

longer time to search for a data in the cache as

the cache memory increases.

When cache memory is full of data, a cache has

to replace the data that is no longer needed with

replacement policies including the typical replacement

policies: LRU (Least Recently Used), Round-Robin

(First-In-First-Out, FIFO), Random.

This study analyzes mobile cache and its perfor

mance by varying the structures of mobile cache

memories including cache sizes and cache levels.

Furthermore, we evaluate the performance of LRU

replacement policy in mobile devices, which is the

policy used in mobile and computer cache, by com

paring LRU with Random and FIFO replacement poli

cy.

This study makes the following contributions:

▪ The importance of cache is analyzed in terms

of improving mobile device performance.

▪ The analysis and simulation results of this study

provide practical information to mobile cache

researchers.

This paper is organized as follows. Section 2

examines related research on mobile cache memory

and replacement policies, and Section 3 describes the

experimental methods for the study. Section 4

analyzes the factors affecting the speed of mobile

cache through experiments, and finally, Section 5

states the conclusion.

II. Preliminaries

1. Mobile Cache

In mobile devices, low-power RAM and flash

memory are used to minimize battery consumption

[3, 21]. Since low-power hardware is limited in speed,

mobile devices use cache memory to improve the

speed of CPU accessing the main memory [1] (Fig. 1).

Information stored in the cache is mainly divided

into two types: The first, is the instruction, which is

stored when the CPU reads the instruction from the

main memory; the second, is the data, which is

stored when LOAD and STORE instructions are

given. These instructions and data are stored in a

unit of block to increase the efficiency of cache

memory [7, 22]. If the desired data is in the cache,

it is called a hit, and a miss if not; the ratio of hits

is called hit rate, and the delay when accessing a

memory is called access time [4].

Study on the Performance Evaluation and Analysis of Mobile Cache Memory 101

CPU

L1 Cache

L2 Cache

L3 Cache

Main Memory

STORE LOAD

Higher Access Time

Fig. 1. Structure of a device with a multi-level cache

(L1, L2, L3)

The methods for improving the cache performance

in mobile devices are as follows. Optimizing the cache

memory size, the cache level, the cache line size, the

replacement policy, and the data access speed within

cache memory are the methods [8, 23]. One way to

increase the data access speed within cache memory

is to divide the cache into an instruction cache and

a data cache [9].

2. Multi-level Cache

A multi-level cache structure is used for the cache

memory to maintain its speed because the caching

speed slows down when a large cache memory is used

[6] (Fig. 1). In a multi-level cache structure, the cache

memory size increases level by level to maintain the

speed of the upper-level cache [6]. Therefore, the

cache of a typical mobile device, smartphone,

consists of three level of cache memory namely, L1,

L2, and L3 [19], and that of a tablet PC consists of

two levels, L1 and L2 [16].

3. Cache Replacement Policies

When there is no space in the cache memory, the

existing data must be evicted with a replacement

algorithm to store new data. The ultimate goal of all

cache replacement algorithms is to maintain the data,

which will be used in the near future based on the

locality, and to evict the data that has the least necessity.

The speed of the device increases depending on the

efficiency of the replacements.

In theory, an efficient replacement algorithm is the

optimal (OPT) policy, which only evicts the data that

will never be used or close to never. Currently, new

cache replacement policies are studied, aiming to

reach the hit rate of the OPT replacement policy [10].

This study applies the LRU, FIFO, and Random

replacement algorithms to the simulation to evaluate

the performance.

The LRU replacement policy evicts the data that is

least recently used. LRU is known for the superior

cache performance to FIFO and Random replacement

policy [11]; however, LRU has large overhead costs

since LRU requires a process of finding data that

haven’t been accessed for a long time. In [12],

two-queue (2Q), which is an LRU replacement algorithm

that supplements the above drawback, is proposed,

and as such, novel replacement algorithms based on

LRU are often used in mobile devices as well as

computers.

The FIFO replacement policy evicts the data that

have remained in the cache for the longest time when

the cache is full. Since the replacement is done by

simply evicting data in chronological order, it does

not produce as much overheads as the overheads

associated with the LRU.

The Random replacement policy is a method for

randomly selecting targets that will be replaced when

the cache is full. It is a good replacement policy when

the data required by CPU has no pattern because

Random replacement policy does not generate

overheads unlike other policies.

III. Experiment Methodology and

Objectives

Table 1 shows the operating system, hardware

specification, programming language, tool for building

codes, and experimental data used in the experiments

of this study.

102 Journal of The Korea Society of Computer and Information

Operating System Windows 10

CPU Intel Xeon E5-2630 2.20GHz

RAM 128GB

Programming

Language
Python 3.7.2

IDE Visual Studio Code

Experimental data
1,000,001 addresses, each

address locating the data

Table 1. Experimental Environment

A CPU, multi-level caches, and a main memory are

implemented in the experiments with all necessary

data stored in the main memory. All data in the main

memory are filled with random values and can be

accessed by a matching address. The process starts

by searching the required data in the register then

in the cache memories, and finally in the main

memory until it finds the data. The access time was

set to 0.1 seconds (s) for the first-level cache (L1),

0.3s for the second-level cache (L2), 0.7s for the

third-level cache (L3), and 10s for the main memory.

Fig. 2 shows a recursive algorithm that searches

the required data through all storages, and returns

the data to all upper-level storages when the data

is found.

There are two inputs to the algorithm: Address,

which represents the memory address of a data,

and StorageIndex, which represents an index to

indicate the storage to search in. In line 1, the

register, the cache, and the main memory are

gathered in a list in which a storage is selected

through StorageIndex (line 2). In line 3, the

presence of the data in current storage is checked

through Address. If the data is found in current

storage, it is returned to the upper-level storage

(line 11) while incrementing a hit-count if the data

is found in a cache memory (lines 5–7). If the data

is not found in current storage, the data is

retrieved from lower-level storage by repeating the

algorithm (lines 8–9). The retrieved data is stored in

current storage with the address and returned to

the upper-level storage device, thereby storing the

retrieved data in the register in the end. The size of

a data stored in a memory is set to 1 kilobyte (KB).

Fig. 2. The cache simulation algorithm

The data set used to check the cache performance

from a microprocessor system study [18] has been

applied to the mobile cache performance experiment

by removing unnecessary data. A data of the original

data set consists of n and address. n is a number

between 0 and 3 indicating type of the MESI protocol

[20] which is a protocol to maintain the consistency

of cache data and main memory data. address is a

32-bit address that incidates the location of a data

in all memories.

In the mobile cache simulation, n was removed and

only address was used to evaluate cache performance

by monitoring the data access speed and hit rate.

In the data set, a total of 43,502 different addresses

were used, and Fig. 3 shows the distribution of

individual address of the data set, total of 43,502

addresses. For example, within the data range of

100,000 to 200,000, mostly addresses between 1 and

10,875 and 10% of addresses between 10,876 and

21,750 were used. In another example, the data

ranging from 700,000 to 800,000 are constituted of

60%, 25%, 10%, and 5% of the addresses between

32,622 and 43,502, 21,751 and 32,625, 1 and 10,875,

10,876 and 21,750 respectively. The addresses from

1 to 10,875 are used regularly in the data set and the

remaining addresses are used temporarily.

In the experiments, the following three test cases

are used to analyze the characteristics of the cache

replacement algorithm.

Study on the Performance Evaluation and Analysis of Mobile Cache Memory 103

Fig. 3. Data set distribution

[Test Case 1] The size of the cache memory, hit

rate, and access speed are analyzed.

The analysis is performed considering that in

general, smartphone cache memories consist of 64KB

for L1, 1,000KB for L2, and 2,000KB for L3, noted as

64/1000/2000. In other words, we implement different

sizes of cache by increasing and decreasing the size

to test the effect of cache memory size on hit rate

and access time. There are five size variations of

L1/L2/L3 implemented: 16/250/500; 32/500/1000;

64/1000/2000; 128/2000/4000, and 256/4000/8000.

[Test Case 2] The efficiency of the multi-level

structure of cache memory is evaluated.

The multi-level cache improves the performance

of devices compared to single level cache [6, 13];

however, in tablets, the fastest CPU [16] consists of

a 2-level cache of 128/8000. Therefore, the effect

on the hit rate and the access speed is examined

for 2-level, 3-level, and 4-level caches. In the

experiment where L3 is removed, 128/4000 and

128/8000 are studied.

In experiment of adding a fourth cache level L4,

128/2000/4000/12000 and 128/1000/2000/12000 are

studied by adding a cache size of 12,000KB that

takes 3s to access.

[Test Case 3] The performance of LRU replacement

policy is compared to other policies.

In the above two experiments, the performance of

the standard LRU replacement policy is evaluated by

comparing to the results of Random and FIFO replace

ment policies. It is important to examine the perfor

mance of the LRU replacement policy because it is

the replacement policy used in mobile devices and

computers.

IV. Evaluation of Mobile Cache

Performance

1. Cache Size and the Performance

In this section, performance analysis is conducted

according to the variation in the cache size, cache

hierarchy, and replacement policy. In Table 2, all

results of the experiment and the replacement

policies exhibiting the best performance according to

the structure of the cache are demonstrated. The

structures of the cache are expressed as S1, S2, …,

S10 in Fig. 4 to Fig. 7 with the precise structures

stated below the figures.

The structure frequently used in smartphones is

64/1000/2000. In the experiment of varying cache

size, 256/4000/8000 exhibited the best performance

among the experimented cache structures.

When the size increased from 16/250/500 to

256/4000/8000, the cache hit rate increased by

approximately 1.5 times from 59% to 94% (Fig. 4,

Table 2), and the average access time noticeably

decreased from 4.2s to 0.7s (Fig. 5, Table 2). With

cache memories bigger than 256/4000/8000, hit

rate and average access time did not vary

significantly. Therefore, it is important to study the

appropriate size of mobile cache memory.

When tested without cache, the average access

time was 10s, as all data were accessed from the

main memory. However, with a cache memory in

the mobile device, the access time decreased by up

to 1s depending on the size of cache memory. With

64/1000/2000, the average access time was 2s,

which was five times faster than the access time in

the absence of cache memory.

104 Journal of The Korea Society of Computer and Information

Fig. 4. Hit rate according to cache sizes. The

cache structures are displayed below.

 S1: 16/250/500, S2: 32/500/1000,

 S3: 64/1000/2000, S4: 128/2000/4000,

 S5: 256/4000/8000

Fig. 5. Access time according to cache sizes. The

cache structures are displayed below.

 S1: 16/250/500, S2: 32/500/1000,

 S3: 64/1000/2000, S4: 128/2000/4000,

 S5: 256/4000/8000

2. Cache Hierarchy and the Performance

In tablet PCs, the fastest CPU consists of a 2-level

cache with 128KB for L1 and 8,000KB for L2. Therefore,

an analysis was conducted to examine the variations

in the hit rate and the access time according to addition

or removal of a cache in a multi-level cache structure

(Table 2). In the experimental results, the hit rate (Fig.

6) and the average access time (Fig. 7) of 128/8000

exhibited comparatively superior performance than

128/4000/8000 which shows why the fastest CPU among

mobile devices has a 2-level cache.

In the experiment, a 3-level cache of 128/2000/4000

and a 2-level cache of 128/4000, which both have the

same last level cache size, were compared to observe

the effect of removing a cache. Based on an LRU

replacement policy that showed the best performance,

the hit rate did not vary (Fig. 6); however, the access

time was about 1.3 times lower for the 2-level cache

compared to the 3-level cache (Fig. 7). Thus, the

reduction of average access time can be observed if

the level of cache is reduced. Note that this decrease

in access time is only observed when the size of L2

is equal to or larger than the size of L3 of a 3-level

cache while maintaining the access speed. However,

since it is difficult to maintain the high speed when

the size of cache memory is increased, high technology

is required to improve performance when L3 is

removed.

Fig. 6. Hit rate according to cache levels, with

some structures including a fourth cache level.

The cache structures are displayed below.

 S7: 128/2000/4000, S8: 128/4000,

 S9: 128/4000/8000, S10: 128/8000,

 S11: 128/2000/4000/12000,

 S12: 128/1000/2000/12000

Fig. 7. Access time according to cache levels,

with some structures including a fourth cache

level. The cache structures are displayed below.

 S7: 128/2000/4000, S8: 128/4000,

 S9: 128/4000/8000, S10: 128/8000,

 S11: 128/2000/4000/12000,

 S12: 128/1000/2000/12000

Study on the Performance Evaluation and Analysis of Mobile Cache Memory 105

Furthermore, L4, the level 4 cache with a size of

12,000KB which require 3s to access, was examined

in the experiment. When 128/2000/4000/12000 was

compared to 128/2000/4000, the hit rate increased

about 3%, which seemed fair but the average access

time drastically increased almost tenfold. However,

reducing the size of upper-level caches by half

(128/1000/2000/12000) exhibited similar hit rate and

access time to 128/2000/4000/12000. Therefore,

with the addition of L4, the reduction of upper-level

cache size while maintaining the performance is

possible. However, with the fact that addition of L4

increases the average access time, the addition of a

cache seems meaningless unless the access speed

of L4 is increased. Furthermore, cache memory is

known to have high power consumption [14, 15]

while lowering battery consumption is a important

factor on mobile devices.

Cache

structure (KB)

Replacement

policy

Hit rate

(%)

Access

time (s)

16/250/500

Random 59.4748 4.260334

LRU 58.8747 4.307847

FIFO 57.0499 4.486027

32/500/1000

Random 71.4501 3.089247

LRU 71.3455 3.090652

FIFO 69.0393 3.316597

64/1000/2000

Random 82.6045 1.986508

LRU 83.1376 1.924715

FIFO 81.6327 2.078204

128/2000/4000

Random 89.9194 1.240775

LRU 91.3542 1.091746

FIFO 90.0138 1.227332

256/4000/8000

Random 93.3883 0.866455

LRU 94.2565 0.771483

FIFO 93.5962 0.841765

128/4000

Random 88.8066 1.312185

LRU 91.3542 1.05888

FIFO 89.7929 1.214273

128/4000/8000

Random 93.3803 0.886838

LRU 94.2565 0.788966

FIFO 93.5945 0.860725

128/8000

Random 92.6575 0.938648

LRU 94.2565 0.777357

FIFO 93.4919 0.85547

128/2000/4000/

12000

Random 94.0897 18.08967

LRU 94.7254 16.1521

FIFO 94.452 17.00586

128/1000/2000/

12000

Random 93.8332 19.06359

LRU 94.7254 16.38825

FIFO 94.4329 17.30579

Table 2. Table describing hit rate and access time

according to different cache structures

3. Cache Replacement Policies and the

Performance

During the experiments above, the result according

to the different replacement policies were compared

(Table 2) to verify the fine performance of the commonly

-used LRU. In the results, the LRU policy had a higher

hit rate and shorter access time compared to the other

replacement policies, except for the case where the

cache size was too small, making the use of a fine

replacement policy meaningless. The LRU replacement

policy displayed a 1.17% and 1.02% higher hit rate than

the Random and FIFO replacement policy respectively.

As the Random replacement policy has a Random

replacement characteristic, it had a higher probability

of evicting useful, reused data than the LRU

replacement policy. The FIFO replacement policy

performed worse than the Random replacement policy

when the size of cache memory was small, but

demonstrated the possibility of an improved perfor

mance over the Random replacement policy when the

cache size is increased.

V. Conclusions

In this study, experiments were conducted to

analyze factors that could increase the performance

of mobile cache memory, including cache size, cache

level, and the type of replacement policy. Subsequent

results proved the importance of cache memories in

mobile devices. In the simulation, the average access

time was up to ten times lower when the cache size

was 256/4000/8000 compared to when there was no

cache. Adding an L4 cache level was inefficient owing

to the slow access speed and high battery consump

tion rate of the cache memory. Removing L3 resulted

in superior performance but required high techno

logy. LRU was the most efficient replacement policy

compared to the FIFO and Random replacement

policies, except for the case where the cache size was

too small and replacement algorithms were meanin

gless.

106 Journal of The Korea Society of Computer and Information

ACKNOWLEDGEMENT

This paper was supported by the Sahmyook

University Research Fund in 2019.

REFERENCES

[1] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi,

C. Emmons, and N. Paver, "Full-system analysis and character

ization of interactive smartphone applications", IEEE International

Symposium on Workload Characterization, In Proceedings of the

2011 IEEE International Symposium on Workload Characterizat

ion, No. 11, pp. 81-90, December 2011. 10.1109/IISWC.2011.6114

205

[2] T. Oh, H. Chung, J. Park, K. Lee, S. Oh, S. Doo, H. Kim, C.

Lee, H. Kim, J. Lee, J. Lee, K. Ha, Y. Choi, Y. Cho, Y. Bae,

T. Jang, C. Park, K. Park, S. Jang, and J. Choi, "A 3.2 Gbps/pin

8 Gbit 1.0 V LPDDR4 SDRAM With Integrated ECC Engine for

Sub-1 V DRAM Core Operation", IEEE Journal of Solid-State

Circuits, Vol. 50, No. 1, pp. 178-190, January 2015. 10.1109/JSS

C.2014.2353799

[3] H. Kim, M. Ryu, and U. Ramachandran, "What is a good buffer

cache replacement scheme for mobile flash storage?", Association

for Computing Machinery, In Proceedings of the 12th ACM

SIGMETRICS/PERFORMANCE joint international conference on

 Measurement and Modeling of Computer Systems, No. 12, pp. 235–

246, June 2012. 10.1145/ 2254756.2254786

[4] A. J. Smith, "Cache Memories", ACM Computing Surveys, Vol.

14, No. 3, pp. 473–530, September 1982. 10.1145/356887.356892

[5] S. Jiang, and X. Zhang, "LIRS: an efficient low inter-reference

recency set replacement policy to improve buffer cache perfor

mance", Association for Computing Machinery, In Proceedings of

the 2002 ACM SIGMETRICS international conference on Meas

urement and modeling of computer systems, No. 2, pp. 31–42,

June 2002. 10.1145/511334.511340

[6] J. L. Baer, and W. H. Wang, "On the inclusion properties for

multi-level cache hierarchies", Association for Computing Machi

nery, In 25 years of the international symposia on Computer

architecture, No. 98, pp. 345–352, August 1998. 10.1145/285930

.285994

[7] M. D. Lam, E. E. Rothberg, and M. E. Wolf, "The cache perfor

mance and optimizations of blocked algorithms", Association for

Computing Machinery, In Proceedings of the fourth international

conference on Architectural support for programming languages

and operating systems, No. 5, pp. 63–74, April 1991. 10.1145/106

972.106981

[8] A. Asaduzzaman, I. Mahgoub, P. Sanigepalli, H. Kalva, R.

Shankar, and B. Furht, "Cache optimization for mobile devices

running multimedia applications", IEEE Sixth International

Symposium on Multimedia Software Engineering, In Proceedings

of the IEEE Sixth International Symposium on Multimedia

Software Engineering, No. 4, pp. 499-506, December 2004.

10.1109/MMSE.2004.34

[9] J. E. Smith, and J. R. Goodman, "Instruction Cache Replacement

Policies and Organizations", IEEE Transactions on Computers,

Vol. 34, No. 3, pp. 234–241, March 1985. 10.1109/TC.1985.1

676566

[10] S. Park, D. Jung, J. Kang, J. Kim, and J. Lee, "CFLRU: a

replacement algorithm for flash memory", Association for

Computing Machinery, In Proceedings of the 2006 international

conference on Compilers, architecture and synthesis for embedde

d systems, No. 8, pp. 234-241, October 2006. 10.1145/117676

0.1176789

[11] H. Al-Zoubi, A. Milenkovic, and M. Milenkovic, "Performance

evaluation of cache replacement policies for the SPEC CPU2000

benchmark suite", Association for Computing Machinery, In

Proceedings of the 42nd annual Southeast regional conference,

No. 42, pp. 267-272, April 2004. 10.1145/986537.986601

[12] T. Johnson, and D. Shasha., "2Q: A Low Overhead High

Performance Buffer Management Replacement Algorithm",

Morgan Kaufmann Publishers Inc, In Proceedings of the 20th

International Conference on Very Large Data Bases, No. 94, pp.

439–450, September 1994. 10.5555/645920.672996

[13] S. Przybylski, M. Horowitz, and J. Hennessy, "Characteristics

of performance-optimal multi-level cache hierarchies", Associatio

n for Computing Machinery, In Proceedings of the 16th Annual

International Symposium on Computer Architecture, No. 89, pp.

114-121, April 1989. 10.1145/74925.74939

[14] P. Panda, G. Patil, and B. Raveendran, "A survey on replacement

strategies in cache memory for embedded systems", 2016 IEEE

Distributed Computing, VLSI, Electrical Circuits and Robotics,

pp. 12-17, August 2016. 10.1109/DISCOVER.2016.7806218

[15] H. Moon, and S. Jee, "An Energy Efficient and High Performance

Data Cache Structure Utilizing Tag History of Cache Addresses",

The Kips Transactions: Part A, Vol. 14, No. 1, pp. 55-62,

February 2007. 10.3745/KI PSTA.2007.14-A.1.055

[16] Wikipedia, Apple A12X Processor, https://en.wikipedia.org.

[17] Passmark, https://www.passmark.com.

[18] Wicker, L2-Cache-Simulator, https://github.com/wicker/L2-Cach

e-Simulator.

[19] WikiChip, https://en.wikichip.org/wiki/samsung/exynos/9825.

[20] Wikipedia, https://en.wikipedia.org/wiki/MESI_protocol.

[21] Y. Kim, and Y. Song, "Impact of processor cache memory on

storage performance", Institute of Electrical and Electronics

Study on the Performance Evaluation and Analysis of Mobile Cache Memory 107

Engineers Inc., In Proceedings of the International SoC Design

Conference 2017, pp. 304-305, November 2017. 10.1109/ISO

CC.2017.8368908

[22] J. Ahmed, M. Y. Siyal, S. Najam, and Z. Najam, "Multiprocessors

and Cache Memory", SpringerBriefs in Applied Sciences and

Technology, Fuzzy Logic Based Power-Efficient Real-Time

Multi-Core System, November 2017. 10.1007/978-981-10-3120

-5_1

[23] H. Mehboob, and H. A. Niaz, "ENHANCE THE PERFORMAN

CE OF ASSOCIATIVE MEMORY BY USING NEW METHOD

S", VFAST Transactions on Software Engineering, Vol. 12, No.

3, pp. 49-56, December 2017.

Authors

Sangmin Lee received the B.S in Computer

Engineering from National Institute for Lifelong

Education, Korea, in 2020. He is a currently a

member of AI and Big Data Software Code Lab

at Sahmyook University.

Sangmin Lee is interested in machine learning, deep learning

and computer architecture.

Jongwan Kim received the Ph. D. degree in Com

puter Science and Engineering from Korea Uni

versity, South Korea, in 2007, B. Sc. degree in

Business Administration, and M. Sc. in Computer

Science and Engineering

from Sahmyook University, Soongsil University, respectively. Dr.

Kim joined the faculty of the Smith College of Liberal Arts, at

Sahmyook University, Seoul, Korea, in 2016. His research interests

include Mobile&Streaming Data Management, Location-based

Services, Big data and AI.

Ji young Kim received the Ph. D. degree in

Economics from Kyungpook National University,

Korea, in 2012. He had been a deputy director

at Samsung Securities co., In 2012, he moved to

The Catholic University of Korea where

he worked as professor of economics department. He is currently

a professor of business administration at Sahmyook University.

His current research interests include pricing mechanism of

whether derivatives, financial issues and economic effect analysis

by econometrics, He received HyangChon Best Paper Award in

2012 from Kyungpook National University.

Dukshin Oh received the Ph. D. degree in Manag

ement Information Systems from Sangmyung Uni

versity in Korea. He has published many papers

in several journals such as International Journal

of Computer Science and Network Security,

The KIPS Transactions. His research interests include Manage

ment/Computer Information Systems, System Analysis and Design,

e-Business and e-Learning systems.

