References
- Bourgeois D, Inquimbert C, Ottolenghi L, Carrouel F. Periodontal pathogens as risk factors of cardiovascular diseases, diabetes, rheumatoid arthritis, cancer, and chronic obstructive pulmonary disease - is there cause for consideration? Microorganisms 2019; 7: E424.
- Scannapieco FA, Cantos A. Oral inflammation and infection, and chronic medical diseases: implications for the elderly. Periodontol 2000 2016; 72: 153-75. https://doi.org/10.1111/prd.12129
- Molander B, Ahlqwist M, Grondahl HG. Panoramic and restrictive intraoral radiography in comprehensive oral radiographic diagnosis. Eur J Oral Sci 1995; 103: 191-8. https://doi.org/10.1111/j.1600-0722.1995.tb00159.x
- Ainamo J, Barmes D, Beagrie G, Cutress T, Martin J, Sardo-Infirri J. Development of the World Health Organization (WHO) community periodontal index of treatment needs (CPITN). Int Dent J 1982; 32: 281-91.
- Litjens G, Kooi T, Bejnordi BE, Setio AA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017; 42: 60-88. https://doi.org/10.1016/j.media.2017.07.005
- Joda T, Waltimo T, Probst-Hensch N, Pauli-Magnus C, Zitzmann NU. Health data in dentistry: an attempt to master the digital challenge. Public Health Genomics 2019; 22: 1-7. https://doi.org/10.1159/000501643
- Lee JH, Kim DH, Jeong SN, Choi SH. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci 2018; 48: 114-23. https://doi.org/10.5051/jpis.2018.48.2.114
- Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 2016; 39: 1137-49. https://doi.org/10.1109/TPAMI.2016.2577031
- Ghatwary N, Zolgharni M, Ye X. Early esophageal adenocarcinoma detection using deep learning methods. Int J Comput Assist Radiol Surg 2019; 14: 611-21. https://doi.org/10.1007/s11548-019-01914-4
- Zhao ZQ, Zheng P, Xu ST, Wu X. Object detection with deep learning: a review. IEEE Trans Neural Netw Learn Syst 2019; 30: 3212-32. https://doi.org/10.1109/tnnls.2018.2876865
- Page RC, Eke PI. Case definitions for use in population-based surveillance of periodontitis. J Periodontol 2007; 78 (7 Suppl): 1387-99. https://doi.org/10.1902/jop.2007.060264
- Keras. The python deep learning library [cited at 2019 Oct 20]. Available from: https://keras.io/
- Xian M, Zhang Y, Cheng HD. Fully automatic segmentation of breast ultrasound images based on breast characteristics in space and frequency domains. Pattern Recognit 2015; 48: 485-97. https://doi.org/10.1016/j.patcog.2014.07.026
- Erhan D, Bengio Y, Courville A, Manzagol PA, Vincent P, Bengio S. Why does unsupervised pre-training help deep learning? J Mach Learn Res 2010; 11: 625-60.
- Greenspan H, van Ginneken B, Summers RM. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 2016; 35: 1153-9. https://doi.org/10.1109/TMI.2016.2553401
- Yang J, Xie Y, Liu L, Xia B, Cao Z, Guo C. Automated dental image analysis by deep learning on small dataset. Proceedings of 2018 IEEE 42nd Annual Computer Software and Applications Conference; 2018 Jul 23-27; Tokyo, Japan: IEEE, 2018.
- Hwang JJ, Jung YH, Cho BH, Heo MS. An overview of deep learning in the field of dentistry. Imaging Sci Dent 2019; 49: 1-7. https://doi.org/10.5624/isd.2019.49.1.1
- Poedjiastoeti W, Suebnukarn S. Application of convolutional neural network in the diagnosis of jaw tumors. Healthc Inform Res 2018; 24: 236-41. https://doi.org/10.4258/hir.2018.24.3.236
- Zhao ZQ, Zheng P, Xu ST, Wu X. Object detection with deep learning: a review. IEEE Trans Neural Netw Learn Syst 2019; 30: 3212-32. https://doi.org/10.1109/tnnls.2018.2876865
- Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, et al. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep 2019; 9: 3840. https://doi.org/10.1038/s41598-019-40414-y
- Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac Radiol 2019; 48: 20180051. https://doi.org/10.1259/dmfr.20180051
Cited by
- Machine Learning and Intelligent Diagnostics in Dental and Orofacial Pain Management: A Systematic Review vol.2021, 2020, https://doi.org/10.1155/2021/6659133
- Artificial intelligence in oral and maxillofacial radiology: what is currently possible? vol.50, pp.3, 2020, https://doi.org/10.1259/dmfr.20200375
- Detection of periodontal bone loss in mandibular area from dental panoramic radiograph using image processing techniques vol.33, pp.17, 2020, https://doi.org/10.1002/cpe.6323
- Automatic classification and detection of oral cancer in photographic images using deep learning algorithms vol.50, pp.9, 2020, https://doi.org/10.1111/jop.13227
- The Learning Curve of Artificial Intelligence for Dental Implant Treatment Planning: A Descriptive Study vol.11, pp.21, 2021, https://doi.org/10.3390/app112110159
- Current applications and development of artificial intelligence for digital dental radiography vol.51, pp.1, 2022, https://doi.org/10.1259/dmfr.20210197