DOI QR코드

DOI QR Code

MAPPING PROPERTIES FOR CONIC REGIONS ASSOCIATED WITH WRIGHT FUNCTIONS

  • Din, Muhey U (Department of Mathematics, Government Post Graduate Islamia College Faisalabad) ;
  • Yalcin, Sibel (Department of Mathematics, Faculty of Arts and Science, Bursa Uludag University)
  • Received : 2019.09.08
  • Accepted : 2019.12.17
  • Published : 2020.06.25

Abstract

In this paper, we are mainly interested to find sufficient conditions for the convolution operator 𝓨λ,µf(z) = zWλ,µ(z) ∗ f(z) belonging to the classes 𝓤𝓒𝓥 (k, α), 𝓢p (k, α), S*ς and Cς.

Keywords

References

  1. I. Aktas, E. Toklu & H. Orhan, Radii of uniform convexity of some special functions, Turkish Journal of Mathematics, 42(6) (2018), 3010-3024. https://doi.org/10.3906/mat-1806-43
  2. R. Bharati, R. Parvatham & A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 28 (1997), 17-32. https://doi.org/10.5556/j.tkjm.28.1997.4330
  3. R. Goreno, Y. Luchko & F. Mainardi, Analytic properties and applications of Wright functions, Frac. Cal. App. Anal. 2(4) (1999), 383-414.
  4. A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92. https://doi.org/10.4064/ap-56-1-87-92
  5. A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), 364-370. https://doi.org/10.1016/0022-247X(91)90006-L
  6. A. Gangadharan, T. N. Shanmugam & H.M. Srivastava, Generalized hypergeometric function associated with k-uniformly convex functions, Comput. Math. Appl., 44 (2002), 1515-1526. https://doi.org/10.1016/S0898-1221(02)00275-4
  7. W. Ma & D. Minda, Uniformly convex functions, Ann. Polon. Math., 57 (1992), 165-175. https://doi.org/10.4064/ap-57-2-165-175
  8. S. Ponnusamy & F. Ronning, Starlike properties for convolutions involving hypergeometric series, Ann. Univ. Mariae Curie-Sklodawska SK. Todawaska L.II, 1(16) (1998), 141-155.
  9. I. Podlubny, Fractional differential equations, San Diego Academic press, (1999).
  10. J. K. Prajapat, Certain geometric properties of theWright function, Integ. Trans. Spec Func., 26(3) (2015), 203-212. https://doi.org/10.1080/10652469.2014.983502
  11. S. Porwal & M. Ahmad, Some sufficient conditions for generalized Bessel functions associated with conic regions, Vietnam Journal of Mathematics, 43(1) (2015), 163-172. https://doi.org/10.1007/s10013-014-0089-8
  12. M. S. Robertson, On the theory of univalent functions, Ann. Math., 37 (1936), 374-408. https://doi.org/10.2307/1968451
  13. F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc, 118 (1993), 189-196. https://doi.org/10.1090/S0002-9939-1993-1128729-7
  14. M. Raza, M. U. Din & S. N. Malik, Certain geometric properties of normalized Wright functions, J. Funct. Spaces, Art. 1896154 (2016), 8 pp.
  15. S. G. Samko, A. A. Kilbas & O. I. Marichev, Fractional integrals and derivatives, theory and applications, Gordan and Breach New York, (1933).
  16. A. K. Sharma, S. Porwal & K. K. Dixit, Class mappings properties of convolutions involving certain univalent functions associated with hypergeometric functions, J. Math. Anal. Appl. 1 (2013), 326-333.
  17. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116. https://doi.org/10.1090/S0002-9939-1975-0369678-0
  18. A. Swaminathan, Certain sufficiency conditions on Gaussian hypergeometric functions, J. Inequal. Pure Appl. Math., 5(4) (2004), issue 83.
  19. E. Toklu, I. Aktas, & H. Orhan, Radii problems for normalized q- Bessel and Wright functions, Acta Universitatis Sapientiae, Mathematica, 11(1) (2019), 203-223. https://doi.org/10.2478/ausm-2019-0016
  20. E. M.Wright, On the coefficients of power series having exponential singularities, J. London Math. Soc., 8 (1933), 71-79. https://doi.org/10.1112/jlms/s1-8.1.71