DOI QR코드

DOI QR Code

Preparation of Non-flammable Wiper Paper by Simple H3PO3 Treatment

아인산 처리에 의한 불연성 와이퍼 용지의 제조

  • Lee, Hong Chan (Dept. of Electrical & Electronic Engineering, Jungwon University) ;
  • Lee, Shichoon (Dept. of Aero-Materials Engineering, Jungwon University)
  • 이홍찬 (중원대학교 전기전자공학전공) ;
  • 이시춘 (중원대학교 항공재료공학과)
  • Received : 2020.04.29
  • Accepted : 2020.06.20
  • Published : 2020.06.28

Abstract

A thin and porous non-flammable wiper was prepared by phosphorus acid solution treatment and subsequent oven annealing. The H3PO3 treatment improved flame retardancy of wiper paper to nonflammable level. Thermogravimetric analyses showed that residues increased to 50% at 700℃, which means this treatment helps dehydration of the cellulose chain and promotes the formation of char-like structures during the burning. FT-IR and X-ray photoelectron spectroscopy showed that some of the added H3PO3 could react with the functional groups of the cellulose chain. The reacted H3PO3 components promote dehydration of the cellulose components and the formation of a char-like structure and improve the flame retardancy of the wiper paper.

매우 얇고 다공성 비인화성 와이퍼 용지를 아인산 수용액 처리에 의해 준비되었다. H3PO3 처리는 와이퍼 용지의 난연성을 불연성 수준으로 개선시켰다. 열중량 분석 결과 700℃에서 잔량이 50%까지 증가했다. 이것은 본 실험과 같은 아인산 처리가 셀룰로오스 사슬의 탈수를 돕고, 연소중에 차르(char)와 유사한 구조의 형성을 촉진한다는 것을 의미한다. FT-IR과 X선 광전자 분광학에서는 H3PO3의 일부분은 셀룰로오스 사슬의 작용기와 반응하는 것으로 보였다. 반응한 아인산은 셀룰로오스의 체인의 탈수를 촉진하고, 차르와 같은 구조의 형성을 도와 와이퍼 용지의 난연성을 향상시킨다.

Keywords

References

  1. F. Laoutid, F. Bonnaud, M. Alexandre, J. M. Lopez-Cuesta & P. H. Dubois. (2009). New Prospects in Flame Retardant. Polymer Materials; from Fundamentals to Nanocomposites. Materials Science Engineering, R63, 100-123. DOI : 10.1016/j.mser.2008.09.002
  2. A. R. Horrocks, B. K. Kandola, P. J. Davies, S. Zhang & S. A. Padbury. (2003). Developments in Flame Retardant Textiles-a Review. Polymer Degradation Staility. 88, 3-12. DOI : 10.1016/j.polymdegradstab.2003.10.024
  3. A. R. Horrocks. (2011). Flame retardant challenges for textiles and fibres: New chemistry versus innovatory solutions. Polymer Degradation Stability, 96, 377-392. DOI: 10.1016/j.polymdegradstab.2010.03.036
  4. D. Aravind, Z. Z. Yu, G. P. Cai & Y. W. Mai. (2013). Recent developments in the fire retardancy of polymeric materials. Progress in Polymer Science, 38, 1357-1387. DOI: 10.1016/j.progpolymsci.2013.06.006
  5. S. V. Levchik & E. D. Wei. (2006). A review of recent progress in phosphorous-based flame retardant. Journal of Fire Science, 24, 345-364. DOI : 10.1177/0734904106068426
  6. D. D. Jiang, Q. Yao, M. A. McKinney & C. A. Wilkie. (1999). TGA/FTIR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts. Polymer Degradation Stability, 63, 423-434. DOI : 10.1016/S0141-3910(98)00123-2
  7. B. Li & M. Xu. (2006). Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polymer Degradation Stability, 91, 1380-1386. DOI: 10.1016/j.polymdegradstab.2005.07.020
  8. W. Liu, D. Q. Chen, Y. Z. Wang, D. Y. Wang, & M. H. Qu. (2007). Char-forming mechanism of a novel, polymeric flame retardant with char agent. Polymer Degradation Stability, 92, 1046-1052. DOI: 10.1016/j.polymdegradstab.2007.02.009
  9. A. S. Politou, C. Morterra & M. I. D. Low. (1990). Infrared studies of carbons. XII. The formation of char from a polycarbonate. Carbon 28, 529-538. DOI : 10.1016/0008-6223(90)90049-5
  10. D. W. van Krevelen. (2009). Properties of Polymers. 4th ed. Elsevier B.V., Amsterdam, 847-873.
  11. B. K. Kandola, S. Horrocks & A. R. Horrocks. (1997). Evidence of interaction in flame-retardant fibre-intumescent combination by thermal analytical techniques. Thermochimica Acta, 294, 113-125. DOI : 10.1016/S0040-6031(96)03151-6
  12. A. R. Horrocks & S. Zhang. (2001). Enhancing polymer flame retardancy by the reaction with phosphorylated polyols. I. Cellulose. Polymer, 42, 8025-8033. DOI : 10.1016/S0032-3861(01)00321-4
  13. S. Zhang & A. R. Horrocks. (2003). Substantive intumescence from phosphorylated propanediol derivatives substituted on to cellulose. Journal of Applied Polymer Science. 90, 3165-3172. DOI : 10.1002/app.12733
  14. P. J. Davies, A. R. Horrocks & A. Alderson. (2005). The sensitization of thermal decomposition ofammonium polyphosphate by selected metal ions and their potential for the improved cotton fabric flame retardancy. Polymer Degradation Stability, 88, 114-122. DOI : 10.1016/j.polymdegradstab.2004.01.029
  15. G. Chigwada & C. A. Wilkie. (2003). Synergy between conventional phosphorus fire retardants and organically-modified clays can lead to fire retardancy of styrenics. Polymer Degradation Stability, 80, 551-557. DOI : 10.1016/S0141-3910(03)00156-3
  16. D. Q. Chen, Y. Z. Wang, X. P. Hu, D. Y. Wang, M. H. Qu, B. Yang. (2005). Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephthalate) fabrics. Polymer Degradation Stability, 88, 349-356. DOI : 10.1016/j.polymdegradstab.2004.11.010
  17. G. C. Tesoro & C. H. Meiser. (1970). Some effects of chemical composition on the flammability behavior of textiles. Textile Research, J40, 430-436. DOI : 10.1177/004051757004000506
  18. S. H. Chiu & W. K. Wang. (1998). Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives. Polymer, 39, 1951-1955. DOI : 10.1016/S0032-3861(97)00492-8
  19. W. Wu & C. Q. Yang. (2004). Comparison of DMDHEU and melamine-formaldehyde as the binding agents for a hydroxyl-functional organophosphorus flame retarding agent on cotton. Journal of Fire Science, 22, 125-142. DOI : 10.1177/0734904104039695
  20. A. R. Horrocks & S. Zhang. (2002). Enhancing polymer flame retardancy by the reaction with phosphorylated polyols. II. Cellulose treated with phosphonium salt urea condensate (Proban CC) flame retardant. Fire Materials, 26, 173-182. DOI : 10.1002/fam.794
  21. A. Granzow. (1978). Flame retardation by phosphorous compounds. Accounts Chemical Research, 11, 177-183. DOI : 10.1021/ar50125a001
  22. T. Ishikawa, I. Maki, T. Koshizuka, T. Ohkawa & K. Takeda. (2004). Effect of perfluoroalkane sulfonic acid on the flame retardancy of polycarbonate. Journal of Macromolecular Science Part A. Pure Applied Science, A41, 523-535. DOI : 10.1081/MA-120030922
  23. Y. Z. Wang, B. Yi, B. Wu, B. Yang & Y. Liu. (2003). Thermal behaviors of flame-retardant polycarbonates containing diphenyl sulfonate and poly(sulfonyl phenylene phosphonate). Journal Applied Polymer Science, 89, 882-899. DOI : 10.1002/app.12193
  24. M. Fan, D. Dai & B. Huang. (2012). Fourier transform infrared spectroscopy for natural fibres, InTech Fourier transform-Materials analysis. InTech 45-68. DOI : 10.5772/35482
  25. Y. Okada, W. Kawanobe, N. Hayakawa, S. Tsubokura, R. Chujo, H. Fujimatsu, T. Takizawa & T. Hirai. (2011). Whitening of polyvinyl alcohol used as restoration material for Shohekiga. Polymer Journal, 43, 74-77. DOI : 10.1038/pj.2010.103
  26. L. M. Proniewicz, C. Paluszkiewicz, A. Weselucha-Birczynska, A. Baranski & D. Dutka. (2002). FT-IR and FT-Raman study of hydrothermally degraded groundwood containing paper. Journal Molecular Structure, 614, 345-353. DOI : 10.1016/S0022-2860(02)00275-2
  27. L. M. Proniewicz, C. Paluszkiewicz, A. Weselucha-Birczynska, A. Majcherczyk, A. Baranski & A. Konieczna. (2001) FT-IR and FT-Raman study of hydrothermally degraded cellulose. Journal Molecular Structure, 596, 163-169. DOI : 10.1016/S0022-2860(01)00706-2
  28. M. J. Kim, I. Y. Jeon, J. M. Seo, L. Dai, J. B. Baek. (2014). Graphene phosphonic acid as an efficient flame retardant. ACS Nano, 8, 2820-2825. DOI : 10.1021/nn4066395
  29. P. L. Granja, L. Pouyse'gu, D. Deffieux, G. Daude, B. De Je'so, C. Labruge're, C. Baquey & M. A. Barbosa. (2001). Cellulose phosphates as biomaterials. II. surface chemical modification of regenerated cellulose hydrogels. Journal Applied Polymer Science, 82, 3354-3365. DOI : 10.1002/app.2194
  30. C. H. Ke, J. Li, K. Y. Fang, Q. L. Zhu, J. Zhu, Q. Yan & Y. Z. Wang. (2010). Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polymer Degradation Stability, 95, 763-770. DOI : 10.1016/j.polymdegradstab.2010.02.011
  31. J. Yang, Y. Huang, Y. Lu, S. Li, Q. Yang & G. Li. (2005). The synergistic mechanism of thermally reduced graphene oxide and antioxidant in improving the thermo-oxidative stability of polypropylene. Carbon, 89, 340-349. DOI : 10.1016/j.carbon.2015.03.069
  32. Q. Wu, B. Qu, Y. Xu & Q. Wu. (2000). Surface photo-oxidation and photostabilization of photocross-linked polyethylene. Polymer Degradation Stability, 68, 97-102. DOI : 10.1016/S0141-3910(99)00171-8