References
- X. Lurton. (2004). An introduction to underwater acoustics. The Journal of the Acoustical Society of America, 115(2), 443. DOI : 10.1121/1.1639324
- A. Baggeroer. (1984). Acoustic telemetry-an overview. IEEE Journal of oceanic engineering, 9(4), 229-235. DOI : 10.1109/JOE.1984.1145629
- H. H. Ng, W. S. Soh & M. Motani. (2008). MACA-U: A media access protocol for underwater acoustic networks. In IEEE GLOBECOM 2008-2008 IEEE Global Telecommunications Conference (pp. 1-5). IEEE.
- M. Yang, M. Gao, C. H. Foh, J. Cai & P. Chatzimisios. (2011). DC-MAC: A data-centric multi-hop MAC protocol for underwater acoustic sensor networks. In 2011 IEEE Symposium on Computers and Communications (ISCC) (pp. 491-496). IEEE.
- N. Chirdchoo, W. S. Soh & K. C. Chua. (2008). MACA-MN: A MACA-based MAC protocol for underwater acoustic networks with packet train for multiple neighbors. In VTC Spring 2008-IEEE Vehicular Technology Conference (pp. 46-50). IEEE.
- H. H. Ng, W. S. Soh & M. Motani. (2010, September). BiC-MAC: Bidirectional-concurrent MAC protocol with packet bursting for underwater acoustic networks. In OCEANS 2010 MTS/IEEE SEATTLE (pp. 1-7). IEEE.
- A. Sher, A. Khan, N. Javaid, S. H. Ahmed, M. Y. Aalsalem & W. Z. Khan. (2018). Void hole avoidance for reliable data delivery in IoT enabled underwater wireless sensor networks. Sensors, 18(10), 3271. DOI : 10.3390/s18103271
- J. W. Lee & H. S. Cho. (2014). Cascading multi-hop reservation and transmission in underwater acoustic sensor networks. Sensors, 14(10), 18390-18409. DOI : 10.3390/s141018390
- W. H. Liao & C. C. Huang. (2011). SF-MAC: A spatially fair MAC protocol for underwater acoustic sensor networks. IEEE Sensors Journal, 12(6), 1686-1694. DOI : 10.1109/JSEN.2011.2177083
- M. S. Kwon, U. J. Gim, J. J. Lee & O. Jo. (2018). IoT-based Water Tank Management System for Real-time Monitoring and Controling. Journal of Convergence for Information Technology, 8(6), 217-223. DOI : 10.22156/CS4SMB.2018.8.6.217
- Y. S. Jeong. (2017). A Study on improving manufacturing environment using IoT technology in small business environment. Journal of Convergence for Information Technology, 7(2), 83-90. DOI : 10.22156/CS4SMB.2017.7.2.083
- K. O. Park & J. K. Lee. (2017). A Countermeasure Technique for Attack of Reflection SSDP in Home IoT. Journal of Convergence for Information Technology, 7(2), 1-9. DOI : 10.22156/CS4SMB.2017.7.2.001
- J. H. Ku. (2017). A Study on the Machine Learning Model for Product Faulty Prediction in Internet of Things Environment. Journal of Convergence for Information Technology, 7(1), 55-60. DOI : 10.22156/CS4SMB.2017.7.1.055
- L. Wan, H. Zhou, X. Xu, Y. Huang, S. Zhou, Z. Shi & J. H. Cui. (2014). Adaptive modulation and coding for underwater acoustic OFDM. IEEE Journal of Oceanic Engineering, 40(2), 327-336. DOI : 10.1109/JOE.2014.2323365
- H. S. Lee, J. W. Jung, C. U. Baek, A. H. Lee & W. J. Kim. (2019). Adaptive Modulation and Coding for Underwater Acoustic Communication. In 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 54-56). IEEE.
- K. Pelekanakis, L. Cazzanti, G. Zappa & J. Alves. (2016). Decision tree-based adaptive modulation for underwater acoustic communications. In 2016 IEEE Third Underwater Communications and Networking Conference (UComms) (pp. 1-5). IEEE.
- J. Lin, W. Su, L. Xiao & X. Jiang. (2018). Adaptive modulation switching strategy based on Q-learning for underwater acoustic communication channel. In Proceedings of the Thirteenth ACM International Conference on Underwater Networks & Systems (pp. 1-5).
- W. Su, J. Lin, K. Chen, L. Xiao & C. En. (2019). Reinforcement Learning-Based Adaptive Modulation and Coding for Efficient Underwater Communications. IEEE Access, 7, 67539-67550. https://doi.org/10.1109/access.2019.2918506
- K. Pelekanakis & L. Cazzanti. (2018, October). On adaptive modulation for low SNR underwater acoustic communications. In OCEANS 2018 MTS/IEEE Charleston (pp. 1-6). IEEE.
- A. Goldsmith. (2005). Wireless communications. Cambridge university press.
- S. Verdu. (2002). Spectral efficiency in the wideband regime. IEEE Transactions on Information Theory, 48(6), 1319-1343. DOI : 10.1109/TIT.2002.1003824
- F. Meshkati, H. V. Poor, S. C. Schwartz & N. B. Mandayam. (2005). An energy-efficient approach to power control and receiver design in wireless data networks. IEEE transactions on communications, 53(11), 1885-1894. DOI : 10.1109/TCOMM.2005.858695
- S. Cui, A. J. Goldsmith & A. Bahai. (2005). Energy-constrained modulation optimization. IEEE transactions on wireless communications, 4(5), 2349-2360. https://doi.org/10.1109/TWC.2005.853882
- J. Byun, Y. H. Cho, T. H. Im, H. L. Ko, K. S. Shin & O. Jo. (2020). Iterative Learning for Reliable Underwater Link Adaptation. Thirty-Fourth AAAI Conference on Artificial Intelligence, 34(10), 13761-13762.
- T. Jayalakshmi & A. Santhakumaran. (2011). Statistical normalization and back propagation for classification. International Journal of Computer Theory and Engineering, 3(1), 1793-8201.