DOI QR코드

DOI QR Code

Mixture rule for studding the environmental pollution reduction in concrete structures containing nanoparticles

  • Tabatabaei, Javad (Department of Petroleum and Geology, Meymeh Branch, Islamic Azad University) ;
  • Nourbakhsh, Seyed Hesam (Department of Civil Engineering, Meymeh Branch, Islamic Azad University) ;
  • Siahkar, Mahdi (Department of Mining Engineering, Mahallat Branch, Islamic Azad University)
  • 투고 : 2019.10.09
  • 심사 : 2020.02.27
  • 발행 : 2020.06.25

초록

Nanotechnology is an upcoming technology that can provide solution for combating pollution by controlling shape and size of materials at the nanoscale. This review provides comprehensive information regarding the role of nanotechnology in pollution control at concrete structures. Titanium dioxide (TiO2) nanoparticles are a good item for concrete structures for diminishing the air polluting affect by gasses of exhaust. In this article, the mixture rule is presented for the effect of nanoparticles in environmental pollution reduction in concrete structures. The compressive strength, elastic modulus and reduction of steel bars in the concrete structures are studied. The Results show that TiO2 nanoparticles have significant effect on the reduction of environmental pollution and increase of stiffness in the concrete structures. In addition, the nanoparticles can reduce the use of steel bars in the concrete structure.

키워드

참고문헌

  1. Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963.
  2. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187.
  3. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057.
  4. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
  5. Belkorissat, I., Houari, M.S.A., Tounsi, A. and Hassan, S. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063.
  6. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695.
  7. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0.
  8. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Advan. Mat. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088.
  9. Bessaim, A., Houari, M.S.A. and Tounsi, A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888.
  10. Besseghier, A., Houari, M.S.A., Tounsi, A. and Hassan, S. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/sss.2017.19.6.601.
  11. Bouafia, Kh., Kaci, A., Houari M.S.A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19, 115-126. https://doi.org/10.12989/sss.2017.19.2.115.
  12. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085.
  13. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016b), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397.
  14. Boukhari, A., Atmane, H.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837.
  15. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227.
  16. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409.
  17. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016a), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.
  18. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.
  19. Dai, H.L., Wang, L. and Ni, Q. (2013), "Dynamics of a fluid-conveying pipe composed of two different materials", Int. J. Eng. Sci., 73, 67-76. https://doi.org/10.1016/j.ijengsci.2013.08.008.
  20. Deng, J., Liu, Y., Zhang, Z. and Liu, W. (2017), "Stability analysis of multi-span viscoelastic functionally graded material pipes conveying fluid using a hybrid method", Eur. J. Mech. A/Solid., 65, 257-270. https://doi.org/10.1016/j.euromechsol.2017.04.003.
  21. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11, 671-690. https://doi.org/10.12989/gae.2016.11.5.671.
  22. Dutta, G., Panda. S.K., Mahapatra, T.R. and Singh, V.K. (2017), "Electro-magneto-elastic response of laminated composite plate: A finite element approach", Int. J. Appl. Comput. Math., 3, 2573-2592. https://doi.org/10.1007/s40819-016-0256-6.
  23. El-Haina, F., Bakora, A., Bousahla, A.A. and Hassan, S. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
  24. Ghaitani, M.M. and Majidian, A. (2017), "Frequency and critical fluid velocity analysis of pipes reinforced with FG-CNTs conveying internal flows", Wind Struct., 24, 267-285. https:/doi.org/10.12989/Was.2017.24.3.267.
  25. He, T. (2015), "Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes", Wind Struct., 20, 423-448. https://doi.org/10.12989/was.2015.20.3.423.
  26. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/sem.2017.64.4.391.
  27. Kutin, J. and Bajsic, I. (2014), "Fluid-dynamic loading of pipes conveying fluid with a laminar mean-flow velocity profile", J. Fluids Struct., 50, 171-183. https://doi.org/10.1016/j.jfluidstructs.2014.05.014.
  28. Larbi Chaht, F., Kaci, A., Houari, M.S.A. and Hassan, S. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425 -442. https://doi.org/10.12989/scs.2015.18.2.425.
  29. Lata, P. and Kaur, I. (2019), "Transversely isotropic thick plate with two temperature & GN type-III in frequency domain", Coupl. Syst. Mech., 8, 55-70. https://doi.org/10.12989/csm.2019.8.1.055.
  30. Maalawi, K.Y., Abouel-Fotouh, A.M., El Bayoumi, M. and Yehia, Kh.A.A. (2016), "Design of composite pipes conveying fluid for improved stability characteristics", Int. J. Appl. Eng. Res., 11, 7633-7639.
  31. Madani, H., Hosseini, H. and Shokravi, M. (2017), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22, 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  32. Marzani, A., Mazzotti, M., Viola, E., Vittori, P. and Elishakoff, I. (2012), "FEM formulation for dynamic instability of fluid-conveying pipe on nonuniform elastic foundation", Mech. Bas. Des. Struct. Mach., 40, 83-95. https://doi.org/10.1080/15397734.2011.618443.
  33. Menasria, A., Bouhadra, A., Tounsi, A. and Hassan, S. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.
  34. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A.T. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852.
  35. Mouffoki, A., Adda Bedia, E.A., Houari M.S.A. and Hassan, S. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369.
  36. Ni, Q., Luo, Y., Li, M. and Yan, H. (2017), "Natural frequency and stability analysis of a pipe conveying fluid with axially moving supports immersed in fluid", J. Sound Vib., 403, 173-189. https://doi.org/10.1016/j.jsv.2017.05.023.
  37. Ni, Q., Zhang, Z.L. and Wang, L. (2011), "Application of the differential transformation method to vibration analysis of pipes conveying fluid", Appl. Math. Comput., 217, 7028-7038. https://doi.org/10.1016/j.amc.2011.01.116.
  38. Qian, Q., Wang, L. and Ni, Q. (2009), "Instability of simply supported pipes conveying fluid under thermal loads", Mech. Res. Commun., 36, 413-417. https://doi.org/10.1016/j.mechrescom.2008.09.011.
  39. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells, 2nd Edition, Washington, CRC Press.
  40. Rivero-Rodriguez, J. and Perez-Saborid, M. (2015), "Numerical investigation of the influence of gravity on flutter of cantilevered pipes conveying fluid", J. Fluid. Struct., 55, 106-121. https://doi.org/10.1016/j.jfluidstructs.2015.02.009.
  41. Ryu, B.J., Ryu, S.U., Kim, G.H. and Yim, K.B. (2004), "Vibration and dynamic stability of pipes conveying fluid on elastic foundations", KSME Int. J., 18, 2148-2157. https://doi.org/10.1007/BF02990219.
  42. Senthil, K., Singhal, A. and Shailja, B. (2019), "Damage mechanism and stress response of reinforced concrete slab under blast loading", Coupl. Syst. Mech., 8, 315-338. https://doi.org/10.12989/csm.2019.8.4.315.
  43. Shen, H.Sh. and Zhang, Ch.L. (2011), "Nonlocal beam model for nonlinear analysis of carbon nanotubes on elastomeric substrates", Comput. Mater. Sci., 50, 1022-1029. https://doi.org/10.1016/j.commatsci.2010.10.042.
  44. Shokravi, M. (2017a), "Buckling analysis of embedded laminated plates with agglomerated CNT-reinforced composite layers using FSDT and DQM", Geomech. Eng., 12, 327-346. https://doi.org/10.12989/gae.2017.12.2.327.
  45. Shokravi, M. (2017b), "Vibration analysis of silica nanoparticles-reinforced concrete beams considering agglomeration effects", Comput. Concrete, 19, 333-338. https://doi.org/10.12989/cac.2017.19.3.333.
  46. Sun, F.J. and Gu, M. (2014), "A numerical solution to fluid-structure interaction of membrane structures under wind action", Wind Struct., 19, 35-58. https://doi.org/10.12989/was.2014.19.1.035.
  47. Texier, B.D. and Dorbolo, S. (2015), "Deformations of an elastic pipe submitted to gravity and internal fluid flow", J. Fluid. Struct., 55, 364-371. https://doi.org/10.1016/j.jfluidstructs.2015.03.010.
  48. Wang, L. (2012), "Flutter instability of supported pipes conveying fluid subjected to distributed follower forces", Acta Mechanica Solida Sinica, 25, 46-52. https://doi.org/10.1016/S0894-9166(12)60005-6.
  49. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693.
  50. Zidi, M., Tounsi, A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001.