DOI QR코드

DOI QR Code

Bending behaviour of FGM plates via a simple quasi-3D and 2D shear deformation theories

  • Youcef, Ali (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Bourada, Mohamed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Draiche, Kada (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Boucham, Belhadj (Laboratory of Mechanics of Structures and Solids (LMSS), Faculty of Technology, Department of Mechanical Engineering, University Sidi Bel Abbes University) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Addou, Farouk Yahia (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
  • Received : 2019.03.12
  • Accepted : 2020.01.01
  • Published : 2020.06.25

Abstract

This article investigates the static behaviour of functionally graded (FG) plates sometimes declared as advanced composite plates by using a simple and accurate quasi-3D and 2D hyperbolic higher-order shear deformation theories. The properties of functionally graded materials (FGMs) are assumed to vary continuously through the thickness direction according to exponential law distribution (E-FGM). The kinematics of the present theories is modeled with an undetermined integral component and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate; therefore, it does not require the shear correction factor. The fundamental governing differential equations and boundary conditions of exponentially graded plates are derived by employing the static version of principle of virtual work. Analytical solutions for bending of EG plates subjected to sinusoidal distributed load are obtained for simply supported boundary conditions using Navier'is solution procedure developed in the double Fourier trigonometric series. The results for the displacements and stresses of geometrically different EG plates are presented and compared with 3D exact solution and with other quasi-3D and 2D higher-order shear deformation theories to verify the accuracy of the present theory.

Keywords

Acknowledgement

Author would like to acknowledge the support provided by the Directorate General for Scientific Research and Technological Development (DGRSDT).

References

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  2. Adda Bedia, W., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.Sh. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  3. Ahmed, A. (2014), "Post buckling analysis of sandwich beams with functionally graded faces using a consistent higher order theory", Int. J. Civil Struct. Environ., 4(2), 59-64.
  4. Akavci, S.S. and Tanrikulu, A.H. (2015), "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. Part B, 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043.
  5. Akbas, S.D. (2018a), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
  6. Akbas, S.D. (2018b), "Nonlinear thermal displacements of laminated composite beams", Coupl. Syst. Mech., 7(6), 691-705. https://doi.org/10.12989/csm.2018.7.6.691.
  7. Akbas, S.D. (2019), "Forced vibration analysis of functionally graded sandwich deep beams", Coupl. Syst. Mech., 8(3), 259-271. http://dx.doi.org/10.12989/csm.2019.8.3.259.
  8. Aldousari, S.M. (2017), "Bending analysis of different material distributions of functionally graded beam", Appl. Phys. A, 123, 296. https://doi.org/10.1007/s00339-017-0854-0.
  9. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  10. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  11. Avcar, M. and Alwan, A.S. (2017), "Free vibration of functionally graded Rayleigh beam", Int. J. Eng. Appl. Sci., 9(2), 127-127. https://doi.org/10.24107/ijeas.322884.
  12. Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.
  13. Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.
  14. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  15. Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  16. Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev. ASME, 60, 195-216. https://doi.org/10.1115/1.2777164.
  17. Bisen, H.B., Hirwani, C.K., Satankar, R.K., Panda, S.K., Mehar, K. and Patel, B. (2018), "Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation", J. Nat. Fib., 17(4), 505-519. https://doi.org/10.1080/15440478.2018.1503129.
  18. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  19. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.191.
  20. Carrera, E., Brischetto, S. and Robaldo, A. (2008), "A variable kinematic model for the analysis of functionally graded materials plates", AIAA J., 46, 194-203. https://doi.org/10.2514/1.32490.
  21. Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B, 42, 123-33. https://doi.org/10.1016/j.compositesb.2010.10.005.
  22. Cheng, Z.Q. and Batra, R.C. (2000), "Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates", J. Sound Vib., 229, 879-895. https://doi.org/10.1006/jsvi.1999.2525.
  23. Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-Part I: Analysis", Int. J. Solid. Struct., 43, 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011.
  24. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  25. Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/gae.2015.9.5.631.
  26. Daouadji, T.H., Benferhat, R. and Adim, B. (2016), "Bending analysis of an imperfect advanced composite plates resting on the elastic foundations", Coupl. Syst. Mech., 5(3), 269-283. https://doi.org/10.12989/csm.2016.5.3.269.
  27. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  28. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  29. Eltaher, M.A., Fouda, N., El-Midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40, 141. https://doi.org/10.1007/s40430-018-1065-0.
  30. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  31. Ferreira, A.J.M, Batra, R.C. and Roque, C.M.C. (2005), "Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method", Compos. Struct., 69, 449-457. https://doi.org/10.1016/j.compstruct.2004.08.003.
  32. Gandra, J., Miranda, R., Vilaça, P., Velhinho, A. and Pamies Teixeira, J. (2011), "Functionally graded materials produced by friction stir processing", J. Mater. Process. Tech., 211, 1659-1668. https://doi.org/10.1016/j.jmatprotec.2011.04.016.
  33. Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
  34. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", J. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  35. Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates", AIAA J., 40 (1), 162-169. https://doi.org/10.2514/2.1626.
  36. Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001.
  37. Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
  38. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin'is approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  39. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  40. Karami, B., Janghorban, M. and Tounsi, A. (2019d), "On exact wave propagation analysis of triclinic material using three dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487.
  41. Karami, B., Janghorban, M. and Tounsi, A. (2019e), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J. Brazil. Soc. Mech. Sci. Eng., 41, 495. https://doi.org/10.1007/s40430-019-1996-0.
  42. Karami, B., Shahsavari, D. and Janghorban, M. (2018), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143.
  43. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019c), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with grapheme nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
  44. Kawasaki, A. and Watanabe, R. (1997), "Concept and P/M fabrication of functionally gradient materials", Ceram. Int. J., 23, 73-83. https://doi.org/10.1016/0272-8842(95)00143-3.
  45. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., https://doi.org/10.1007/s00366-019-00732-1.
  46. Koizumi, M. (1993), "The concept of FGM", Ceram. Trans., 34, 3-10.
  47. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28, 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  48. Kolahchi, R., Bidgoli, A.M.M. and Heydari, M.M. (2015), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55(5), 1001-1014. http://dx.doi.org/10.12989/sem.2015.55.5.1001.
  49. Kumar, S. (2010), "Development of functionally graded materials by ultrasonic consolidation", CIRP J. Manuf. Sci. Tech., 3, 85-87. https://doi.org/10.1016/j.cirpj.2010.07.006.
  50. Lal, A., Jagtap, K.R. and Singh, B.N. (2017), "Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties", Adv. Comput. Des., 2(3), 165-194. https://doi.org/10.12989/acd.2017.2.3.165.
  51. Laoufi, I., Ameur, M., Zidi, M., Adda Bedia, E.A. and Bousahla, A.A. (2016), "Mechanical and hygrothermal behaviour of functionally graded plates using a hyperbolic shear deformation theory", Steel Compos. Struct., 20(4), 889-911. https://doi.org/10.12989/scs.2016.20.4.889.
  52. Mahamood, R.M. and Akinlabi, E.T. (2017), Functionally Graded Materials, Springer International Publishing AG, 118.
  53. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1926. https://doi.org/10.1177/1099636217727577.
  54. Mantari, J.L. and Guedes Soares, C. (2012), "Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates", Compos. Struct., 94, 2561-2575. https://doi.org/10.1016/j.compstruct.2012.02.019.
  55. Mantari, J.L. and Guedes Soares, C. (2013), "A novel higher-order shear deformation theory with stretching effect for functionally graded plates", Compos.: Part B, 45, 268-281. https://doi.org/10.1016/j.compositesb.2012.05.036.
  56. Mantari, J.L. and Guedes Soares, C. (2014), "A trigonometric plate theory with 5-unknowns and stretching effect for advanced composite plates", Compos. Struct., 107, 396-405. https://doi.org/10.1016/j.compstruct.2013.07.046.
  57. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  58. Mehar, K. and Panda, S.K. (2016), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", IOP Conf. Ser.: Mater. Sci. Eng., 115(1), 012014. https://doi.org/10.1088/1757-899X/115/1/012014.
  59. Mehar, K. and Panda, S.K. (2018), "Elastic bending and stress analysis of carbon nanotube‐reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Technol., 37(6), 1643-1657. https://doi.org/10.1002/adv.21821.
  60. Mehar, K. and Panda, S.K. (2019), "Theoretical deflection analysis of multi-walled carbon nanotube reinforced sandwich panel and experimental verification", Compos. Part B: Eng., 167, 317-328. https://doi.org/10.1016/j.compositesb.2018.12.058.
  61. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2019), "Large deformation bending responses of nanotube-reinforced polymer composite panel structure: Numerical and experimental analyses", Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng., 233(5), 1695-1704. https://doi.org/10.1177/0954410018761192.
  62. Meksi, R, Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, SR. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443.
  63. Miyamoto, Y. (2016), "The applications of functionally graded materials in Japan", Mater. Tech., 11(6), 230-236. https://doi.org/10.1080/10667857.1996.11752708.
  64. Muller, E., Drasar, C., Schilz, J. and Kaysser, W.A. (2003), "Functionally graded materials for sensor and energy applications", J. Mater. Sci. Eng.: A, 362, 17-39. https://doi.org/10.1016/S0921-5093(03)00581-1.
  65. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B Eng., 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089.
  66. Nguyen, K.T., Thai, H.T. and Vo, T.P. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 91-120. http://dx.doi.org/10.12989/scs.2015.18.1.091.
  67. Pindera, M.J., Aboudi, J., Glaeser, A.M. and Arnolds, S.M. (1997), "Use of composites in multi-phased and functionally graded materials", Compos. Part B, 28, 1-175. https://doi.org/10.1016/S1359-8368(96)00016-9
  68. Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D. and Schulte, K. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng.: A, 362(1), 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X.
  69. Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B, 35, 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004.
  70. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
  71. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
  72. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.33.6.805.
  73. Schulz, U., Peters, M., Bach, F.W. and Tegeder, G. (2003), "Graded coatings for thermal, wear and corrosion barriers", J. Mater. Sci. Eng.: A, 362, 61-80. https://doi.org/10.1016/S0921-5093(03)00579-3.
  74. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
  75. Shahsavari, D. and Janghorban, M. (2017), "Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load", J. Braz. Soc. Mech. Sci. Eng., 39(10), 3849-3861. https://doi.org/10.1007/s40430-017-0863-0.
  76. Shinde, B.M. and Sayyad, A.S. (2017), "A quasi-3D polynomial shear and normal deformation theory for laminated composite, sandwich, and functionally graded beams", Mech. Adv. Compos. Struct., 4, 139-152. https://doi.org/10.22075/macs.2017.10806.1105.
  77. Singh, V.K., Hirwani, C.K., Panda, S.K., Mahapatra, T.R. and Mehar, K. (2019), "Numerical and experimental nonlinear dynamic response reduction of smart composite curved structure using collocation and non-collocation configuration", Proc. Inst. Mech. En., Part C: J. Mech. Eng. Sci., 233(5), 1601-1619. https://doi.org/10.1177/0954406218774362.
  78. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech, 94(3), 195-220. https://doi.org/10.1007/BF01176650.
  79. Thai, H.T. and Kim, S.E. (2015), "A review of theories for the modeling and analysis of functionally graded plates and shells", Compos. Struct., 128, 70-86. https://doi.org/10.1016/j.compstruct.2015.03.010.
  80. Thom, V.D., Dinh, K.N., Nguyen, D.D., Duc, H.D. and Tinh, Q.B. (2017), "Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory", Thin Wall. Struct., 119, 687-699. https://doi.org/10.1016/j.tws.2017.07.022.
  81. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  82. Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272, 703-730. https://doi.org/10.1016/S0022-460X(03)00412-7.
  83. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. A (2015), "A quasi-3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct., 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006.
  84. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
  85. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30, 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
  86. Zenkour, A.M. (2007), "Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate", Appl. Math. Model, 77, 197-214. https://doi.org/10.1007/s00419-006-0084-y.
  87. Zhao, N., Qiu, P. and Cao, L. (2012), "Development and application of functionally graded material", Adv. Mater. Res., 562-564, 371-375. https://doi.org/10.4028/www.scientific.net/AMR.562-564.371.