DOI QR코드

DOI QR Code

Advancement of Mass Purification of Porphyra 334 from Porphyra yezoensis by Applying Direct Current

직류전류 인가를 통한 김으로부터 포피라334의 대량 정제 고도화

  • Jang, Sung Joo (Anti­) ;
  • Lee, Jeong Hun (aging Research Institute, BIO-FD&C Co., Ltd) ;
  • Seo, Hyo Hyun (Anti­) ;
  • Lee, Sak (aging Research Institute, BIO-FD&C Co., Ltd) ;
  • Kim, Jiyeon (Anti­) ;
  • Kim, Doyoun (aging Research Institute, BIO-FD&C Co., Ltd) ;
  • Moh, Sang Hyun (Anti­)
  • 장성주 ((주)바이오에프디엔씨 안티에이징 연구소) ;
  • 이정훈 ((주)바이오에프디엔씨 안티에이징 연구소) ;
  • 서효현 ((주)바이오에프디엔씨 안티에이징 연구소) ;
  • 이삭 ((주)바이오에프디엔씨 안티에이징 연구소) ;
  • 김지연 ((주)바이오에프디엔씨 안티에이징 연구소) ;
  • 김도연 (한국화학연구원 의약바이오연구본부) ;
  • 모상현 ((주)바이오에프디엔씨 안티에이징 연구소)
  • Received : 2020.05.20
  • Accepted : 2020.06.20
  • Published : 2020.06.30

Abstract

Marine algae contain a variety of substances, such as mycosporine-like amino acids, which can defend against UV irradiation. Among them, Porphyra-334 derived from Porphyra yezoensis is attracting attention as a novel active ingredient for anti-aging cosmetics because of its excellent anti-oxidative, anti-inflammatory, and wound-healing properties through promoting skin cell migration. In this study, a process using direct current (DC) for increasing the yield of large-scale purification of Porphyra-334 was developed. When DC was applied to obtain Porphyra-334 efficiently, the purification time was shortened by approximately 1/4 compared with the process wherein DC was not applied; moreover, the yield of purification was improved.

Keywords

References

  1. Lee, K. H., Song, S. H. and Jeong, I. H. 1987. Quality changes of dried lavers during processing and storage -1. Quality evaluation of different grades of dried lavers and its changes during storage. 1987. Bull. Korean Fish. Soc. 20(5), 408-418.
  2. Hong, S. P., Koo, J. K., Jo, K. S. and Kim, D. S. 1997. Physicochemical characteristics of water or alcohol soluble extracts from laver, Porphyra yezoensis. J. Korean Soc. Food Sci. Nutr. 26(1), 10-16.
  3. Kim, S. J., Moon, J. S., Kang, S. G. and Jung, S. T. 2003. Extraction of porphyran from decolored laver. Korean J. Food Sci. Technol. 35(6), 1017-1021.
  4. Jun, E. C. and Han, S. O. 2019. The challenges of the export industry and the institutional improvement plan of laver as a semiconductor in the food industry. International Commerce and Information Review. 21(2), 301-319.
  5. Suh, S. S., Hwang, J., Park, M., Seo, H. H., Kim, H. S., Lee, J. H., Moh, S. H. and Lee, T. K. 2014. Anti-Inflammation activities of mycosporine-like amino acids (MAAs) in response to UV radiation suggest potential anti-skin aging activity. Mar. drugs. 12, 5174-5187. https://doi.org/10.3390/md12105174
  6. Choi, H. Y., Yang, D. J., Kulkarni, A., Moh, S. H. and Kim, K. W. 2015. Mycosporine-Like amino acids promote wound healing through focal adhesion kinase (FAK) and mitogen-activated protein kinases (MAP Kinases) signaling pathway in keratinocytes. Mar. Drugs. 13, 7055-7066. https://doi.org/10.3390/md13127056
  7. M. F. J. Raposo, A. M. B. Morais, and R. M. S. C. Morais. 2015. Marine polysaccharides from algae with potential biomedical applications. Mar. Drugs. 13, 2967-3028. https://doi.org/10.3390/md13052967
  8. Takano. S., Nalanishi, A., Uemura, D. and Hirata, Y. 1979. Isolation and structure of a 334 nm UV-absorbing substance, Porphyra-334 from the red alga Porphyra tenera Kjellman. Chem. Lett. 8, 419-420. https://doi.org/10.1246/cl.1979.419
  9. Rui, Y., Zhaohui, Z., Wenshan, S., Bafang, L. and Hu, H. 2019. Protective effect of MAAs extracted from Porphyra tenera against UV irradiation-induced photoaging in mouse skin. J. Photochem. Photobiol. B. 192, 26-33. https://doi.org/10.1016/j.jphotobiol.2018.12.009
  10. Ryu, J., Park, S. J., Kim, I. H., Choi, Y. H. and Nam, T. J. 2014. Protective efect of porphyra-334 on UVA-induced photoaging in human skin fibroblasts. Int. J. Mol. Med. 34, 796-803. https://doi.org/10.3892/ijmm.2014.1815
  11. Torres, A., Enk, C. D., Hochberg, M. and Srebnik, M. 2006. Porphyra-334, a potential natural source for UVA protective sunscreens. Photochem. Photobiol. Sci. 5, 432-435. https://doi.org/10.1039/b517330m
  12. Dunlap, W. C., Shick, J. M. and Yamamoto, Y. 1999. Sunscreens, oxidative stress and antioxidant functions in marine organisms of the Great Barrier Reef. Redox Rep. 4, 301-306. https://doi.org/10.1179/135100099101535142
  13. Wada, N., Sakamoto, T. and Matsugo, S. 2015. Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxid. 4, 603-646. https://doi.org/10.3390/antiox4030603
  14. Tao, C., Sugawara, T., Maeda, S., Wang, X. and Hirata, T.. 2008. Antioxidative activities of a mycosporine-like amino acid, porphyra-334. Fisheries Science. 74, 1166-1172. https://doi.org/10.1111/j.1444-2906.2008.01636.x
  15. Klisch, M., Richter, P., Puchta, R., Häder, D. and Bauer, W. 2007. The Stereostructure of porphyra-334: An experimental and calculational NMR investigation. Evidence for an efficient 'proton sponge'. Helvetica Chimica Acta. 90, 488-511. https://doi.org/10.1002/hlca.200790052
  16. Orfanoudaki, M., Hartmann, A., Karsten, U. and Ganzera, M. 2019. Chemical profiling of mycosporine-like amino acids in twenty-three red algal species. J. Phycol. 55, 393-403. https://doi.org/10.1111/jpy.12827
  17. Coba, F. L., Aguilera, J., Figueroa, F. L., Galvez, M. V. and Herrera, E. 2009. Antioxidant activity of mycosporine-like amino acids isolated from three red macroalgae and one marine lichen. J. Appl. Phycol. 21, 161-169. https://doi.org/10.1007/s10811-008-9345-1