참고문헌
- Ministry of Oceans and Fisheries of Korea. 2019. 1st Administrative Master Plan for Marine Bioresources (2019-2023). http://www.mof.go.kr/article/view.do?articleKey=24487&boardKey=35&menuKey=402tPageNo=1 Accessed 17 Jan 2019
- Ministry of Oceans and Fisheries of Korea. 2019. Implementation Plan in 2019 for the 1st Administrative Master Plan for Marine Bioresources (2019-2023). http://www.mof.go.kr/article/view.do?articleKey=28261&boardKey=22&menuKey=386tPageNo=1 Accessed 21 Dec 2019
- Cuellar-Bermudez, S. P., Aguilar-Hernandez, I., Cardenas- Chavez, D. L., Ornelas-Soto, N., Romero-Ogawa, M. A. and Parra-Saldivar, R. 2015. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol. 8, 190-209. https://doi.org/10.1111/1751-7915.12167
- Leu, S. and Boussiba, S. 2014. Advances in the production of high-value products by microalgae. Ind. Biotechnol. 10, 169-183.
- Pulz, O. and Gross, W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65, 635-648. https://doi.org/10.1007/s00253-004-1647-x
- Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87-96. https://doi.org/10.1263/jbb.101.87
-
Huntley, M. E. and Redalje, D. G. 2007.
$CO_2$ Mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig. Adapt. Strat. Glob. Change 12, 573-608. https://doi.org/10.1007/s11027-006-7304-1 - Li, Y., Horsman, M., Wu, N., Lan, C. Q. and Dubois-Calero, N. 2008. Biofuels from microalgae. Biotechnol. Prog. 24, 815-820.
- Raja, A., Vipin, C. and Aiyappan, A., 2013. Biological importance of marine algaedan overview. Int. J. Curr. Microbiol. App. Sci. 2, 222-227.
- Mehta, L. R., Dworkin, R. H. and Schwid, S. R. 2009. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat. Clin. Pract. Neurol. 5, 82-92.
- Buscemi, S., Corleo, D., Di Pace, F., Petroni, M., Satriano, A. and Marchesini. G. 2018. The effect of lutein on eye and extra-eye health. Nutrients 10, 1321. https://doi.org/10.3390/nu10091321
- Dionisio-Sese, M. L. 2010. Aquatic microalgae as potential sources of UV-screening compounds. Philippine J. Sci. 139, 5-19.
- Priyadarshani, I. and Rath, B. 2012. Commercial and industrial applications of micro algae - a review. J. Algal Biomass Utln. 3, 89-100.
- Suh, S. S., Hwang, J., Park, M., Seo, H. H., Kim, H. S., Lee, J. H., Moh, S. H. and Lee, T. K. 2014. Anti-inflammation activities of mycosporine-like amino acids (MAAs) in response to UV radiation suggest potential anti-skin aging activity. Mar. Drugs 12, 5174-5187. https://doi.org/10.3390/md12105174
- Craggs, R. J., McAuley, P. J. and Smith, V. J. 1997. Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res. 31, 1701-1707. https://doi.org/10.1016/S0043-1354(96)00093-0
-
Jiang, L., Luo, S., Fan, X., Yang, Z. and Guo, R. 2011. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of
$CO_2$ . Appl. Energy 88, 3336-3341. https://doi.org/10.1016/j.apenergy.2011.03.043 - Cho, S., Lee, N., Park, S., Yu, J., Luong, T. T., Oh, Y. K. and Lee, T. 2013. Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresource Technol. 131, 515-520. https://doi.org/10.1016/j.biortech.2012.12.176
- Miranda, A. F., Ramkumar, N., Andriotis, C., Holtkemeier, T., Yasmin, A., Rochfort, S., Wlodkowic, D., Morrison, P., Roddick, F., Spangenberg, G. and Lal, B. 2017. Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnol. Biofuels 10, 120. https://doi.org/10.1186/s13068-017-0798-9
- Whitton, R., Ometto, F., Pidou, M., Jarvis, P., Villa, R. and Jefferson, B. 2015. Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment. Environ. Technol. Rev. 4, 133-148. https://doi.org/10.1080/21622515.2015.1105308
- Slade, R. and Bauen, A. 2013. Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenerg. 53, 29-38. https://doi.org/10.1016/j.biombioe.2012.12.019
- Hong, J. W., Kang, N. S., Jang, H. S., Kim, H. J., An, Y. R., Yoon, M. and Kim, H. S. 2019. Biotechnological potential of Korean marine microalgal strains and its future prospectives. Ocean Polar Res. 41, 289-309. https://doi.org/10.4217/OPR.2019.41.4.289
- Breuer, G., Evers, W. A. C., de Vree, J. H., Kleinegris, D. M. M., Martens, D. E., Wijffels, R. H. and Lamers, P. P. 2013 Analysis of fatty acid content and composition in microalgae. J. Vis. Exp. 80, e50628.
- Kang, N. S., Lee, J. A., Jang, H. S., Kim, K. M., Kim, E. S., Yoon, M. and Hong, J. W. 2019. First record of a marine microalgal species, Chlorella gloriosa (Trebouxiophyceae) isolated from the Dokdo Islands, Korea. Korean J. Environ. Biol. 37, 527-535.
- Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S. and Yang, J. W. 2014. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour. Technol, 155, 330-333. https://doi.org/10.1016/j.biortech.2013.12.077
- Friedl, A., Padouvas, E., Rotter, H. and Varmuza, K. 2005. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544, 191-198. https://doi.org/10.1016/j.aca.2005.01.041
- Mariotti, F, Tomé, D and Mirand, P. P. 2008. Converting nitrogen into protein-beyond 6.25 and Jones' factors. Crit. Rev. Food Sci. Nutr. 48, 177-184. https://doi.org/10.1080/10408390701279749
- Zapata, M., Rodríguez, F. and Garrido, J. L. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: A new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser. 195, 29-45. https://doi.org/10.3354/meps195029
- Jang, H. S., Kang, N. S., Kim, K. M., Jeon, B. H., Park, J. S. and Hong, J. W. 2017. Description and application of a marine microalga Auxenochlorella protothecoides isolated from Ulleung-do. J. Life Sci. 27, 1152-1160. https://doi.org/10.5352/JLS.2017.27.10.1152
- Knothe, G. 2009. Improving biodiesel fuel properties by modifying fatty ester composition. Energ. Environ. Sci. 2, 759-766 https://doi.org/10.1039/b903941d
- Lardon, L., Helias, A., Sialve, B., Steyer, J. P. and Bernard, O. 2009. Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol. 17, 6475-6481.
- Prabandono, K. and Amin, S. 2015. Biofuel production from microalgae. In: Kim, S. W. (ed), Handbook of marine microalgae: biotechnology advances. Academic Press, London, UK, pp. 145-158.
- Kumar, B. R., Deviram, G., Mathimani, T., Duc, P. A., and Pugazhendhi, A. 2019. Microalgae as rich source of polyunsaturated fatty acids. Biocatal. Agric. Biotechnol. 17, 583-588. https://doi.org/10.1016/j.bcab.2019.01.017
- Mehta, L. R., Dworkin, R. H. and Schwid, S. R. 2009. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat. Clin. Pract. Neurol. 5, 82-92. https://doi.org/10.1038/ncpneuro1009
- Jeromson, S., Gallagher, I. J., Galloway, S. D. and Hamilton. D. L. 2015. Omega-3 fatty acids and skeletal muscle health. Mar. Drugs 13, 6977-7004. https://doi.org/10.3390/md13116977
- Kang, J. X. 2011. Omega-3: A link between global climate change and human health. Biotechnol. Adv. 29, 388-390. https://doi.org/10.1016/j.biotechadv.2011.02.003
- Ross AB, JM Jones, ML Kubacki and T Bridgeman. 2008. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol. 99, 6494-6504. https://doi.org/10.1016/j.biortech.2007.11.036
- Lam, M. K. and Lee, K. T. 2015. Bioethanol production from microalgae. In: Kim, S. W. (ed), Handbook of marine microalgae: biotechnology advances. Academic Press, London, UK, pp. 197-208.
- Ortiz-Tena, J. G., Rühmann, B., Schieder, D. and Sieber, V. 2016. Revealing the diversity of algal monosaccharides: fast carbohydrate fingerprinting of microalgae using crude biomass and showcasing sugar distribution in Chlorella vulgaris by biomass fractionation. Algal Res. 17, 227-235. https://doi.org/10.1016/j.algal.2016.05.008
- Liu, X., Zhu, D., Sun, L., Gao, Y. and Wang, C. 2013. Effect of L-arabinose on the postprandial blood glucose and body weight. J. Hyg. Res. 42, 295-297.
- Seri, K., Sanai, K., Matsuo, N., Kawakubo, K., Xue, C. and Inoue, S. 1996. L-arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metab. Clin. Exp. 45, 1368-1374. https://doi.org/10.1016/S0026-0495(96)90117-1
- Becker, E. W. 2013. Microalgae for human and animal nutrition. In: Richmond, A. and Hu, Q. (eds), Handbook of microalgal culture: applied phycology and biotechnology. John Wiley & Sons, Chichester, UK, pp. 461-503.
- Buscemi, S., Corleo, D., Di Pace, F., Petroni, M., Satriano, A. and Marchesini, G. 2018. The effect of lutein on eye and extra-eye health. Nutrients 10, 1321. https://doi.org/10.3390/nu10091321
- Ausich, R. L. 1997. Commercial opportunities for carotenoid production by biotechnology. Pure Appl. Chem. 69, 2169-2173. https://doi.org/10.1351/pac199769102169
- Del Campo, J. A., Garcia-Gonzalez, M. and Guerrero, M. G. 2007. Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Appl. Microbiol. Biotechnol. 74, 1163-1174. https://doi.org/10.1007/s00253-007-0844-9
- Piccaglia, R., Marotti, M. and Grandi, S. 1998. Lutein and lutein ester content in different types of Tagetes patula and T. erecta. Ind. Crops Prod. 8, 45-51. https://doi.org/10.1016/S0926-6690(97)10005-X
- Vechpanich, J. and Shotipruk, A. 2011. Recovery of free lutein from Tagetes erecta: Determination of suitable saponification and crystallization conditions. Sep. Sci. Technol. 46, 265-271. https://doi.org/10.1080/01496395.2010.506904
-
Patterson, E., Wall, R., Fitzgerald, G. F., Ross, R. P. and Stanton, C. 2012. Health implications of high dietary
${\omega}$ -6 polyunsaturated fatty acids. J. Nutr. Metab. 2012, 539426. https://doi.org/10.1155/2012/539426 -
Simopoulos, A.P. 2008. The importance of the
${\omega}$ -6/${\omega}$ -3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. (Maywood) 233, 674-688. https://doi.org/10.3181/0711-MR-311 - De Roos, B., Sneddon, A. A., Sprague, M., Horgan, G. W. and Brouwer, I. A. 2017. The potential impact of compositional changes in farmed fish on its health-giving properties: Is it time to reconsider current dietary recommendations? Public Health Nutr. 20, 2042-2049. https://doi.org/10.1017/S1368980017000696
- Sprague, M., Dick, J. R. and Tocher, D. R. 2016. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006-2015. Sci. Rep. 6, 21892. https://doi.org/10.1038/srep21892
- Kang, N. S., Kim, E. S., Lee, J. A., Kim, K. M., Kwak, M. S., Yoon, M. and Hong, J. W. 2020. First report of the dinoflagellate genus Effrenium in the East Sea of Korea: morphological, genetic, and fatty acid characteristics. Sustainability 12, 3928. https://doi.org/10.3390/su12093928