Acknowledgement
The work described in this paper was fully supported by a grant from the National Key Research and Development Program of China (No. 2018YFC1507800), grants from the National Natural Science Foundation of China (nos. 51525804, 51708464), a grant from Primary Research & Development Plan of Sichuan Province (2019YFG0001), a grant from the Hunan Provincial Transportation Science and Technology Project (No. 201615), and a grant from the Fundamental Research Funds for the Central Universities (No. 2682019CX02).
References
- Bastos F., Caetano E., Cunha A., Cespedes X. and Flamand O. (2018), "Characterisation of the wind properties in the Grande Ravine viaduct", J. Wind Eng. Ind. Aerod., 173, 112-131. https://doi.org/10.1016/j.jweia.2017.12.0https://doi.org/10.1016/j.jweia.2017.12.012 12.
- Belu R. and Koracin D. (2013), "Statistical and spectral analysis of wind characteristics relevant to wind energy assessment using tower measurements in complex terrain", J. Wind Energy, 2013, 1-12. https://doi.org/10.1155/2013/739162.
- Carpenter P. and Locke N. (1999), "Investigation of wind speeds over multiple two-dimensional hills", J. Wind Eng. Ind. Aerod., 83(1), 109-120. https://doi.org/10.1016/S0167-6105(99)00065-3.
- Conan, B., Chaudhari, A., Aubrun, S., Van Beeck, J., Hämäläinen, J. and Hellsten, A. (2016), "Experimental and numerical modelling of flow over complex terrain: The bolund hill", Bound. Layer Meteorol., 158(2), 183-208. https://doi.org/10.1007/s10546-015-0082-0.
- Cuerva‐Tejero A., Avila‐Sanchez S., Gallego‐Castillo C., Lopez‐Garcia O., Perez‐Alvarez J. and Yeow T.S. (2018), "Measurement of spectra over the Bolund hill in wind tunnel", Wind Energy, 21(2), 87-99. https://doi.org/10.1002/we.2146.
- Fenerci A. and Oiseth O. (2017), "Measured buffeting response of a long-span suspension bridge compared with numerical predictions based on design wind spectra", J. Struct. Eng., 143(9), 04017131. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001873.
- Fenerci A. and Oiseth O. (2018), "Strong wind characteristics and dynamic response of a long-span suspension bridge during a storm", J. Wind Eng. Ind. Aerod., 172, 116-138. https://doi.org/10.1016/j.jweia.2017.10.030.
- Fenerci A., Oiseth O. and Ronnquist A. (2017), "Long-term monitoring of wind field characteristics and dynamic response of a long-span suspension bridge in complex terrain", Eng. Struct., 147(15), 269-284. https://doi.org/10.1016/j.engstruct.2017.05.070.
- Hu, P., Han, Y., Xu, G., Cai, C.S. and Cheng, W. (2020), "Effects of inhomogeneous wind fields on the aerostatic stability of a long-span cable-stayed bridge located in a mountain-gorge terrain", J. Aerosp. Eng., 33(3), https://doi.org/10.1061/(ASCE)AS.1943-5525.0001117.
- Hu, P., Li, Y.L., Huang, G.Q., Kang, R. and Liao, H.L. (2015), "The appropriate shape of the boundary transition section for a mountain-gorge terrain model in a wind tunnel test", Wind Struct., 20(1), 15-36. http://dx.doi.org/10.12989/was.2015.20.1.015.
- Huang, G., Jiang, Y., Peng, L., Solari, G., Liao, H. and Li, M. (2019), "Characteristics of intense winds in mountain area based on field measurement: Focusing on thunderstorm winds", J. Wind Eng. Ind. Aerod., 190, 166-182. https://doi.org/10.1016/j.jweia.2019.04.020.
- Hui M.C.H., Larsen A. and Xiang H.F. (2009a), "Wind turbulence characteristics study at the Stonecutters Bridge site: Part II: Wind power spectra, integral length scales and coherences", J. Wind Eng. Ind. Aerod., 97(1), 48-59. https://doi.org/10.1016/j.jweia.2008.11.003.
- Hui M.C.H., Larsen A. and Xiang H.F. (2009b), "Wind turbulence characteristics study at the Stonecutters Bridge site: Part I-Mean wind and turbulence intensities", J. Wind Eng. Ind. Aerod., 97(1), 22-36. https://doi.org/10.1016/j.jweia.2008.11.002.
- Iizuka, S. and Kondo, H. (2004), "Performance of various sub-grid scale models in large-eddy simulations of turbulent flow over complex terrain", Atmos. Environ., 38(40), 7083-7091. https://doi.org/10.1016/j.atmosenv.2003.12.050.
- Ishihara, T., Hibi, K. and Oikawa, S. (1999), "A wind tunnel study of turbulent flow over a three-dimensional steep hill", J. Wind Eng. Ind. Aerod., 83(1-3), https://doi.org/10.1016/S0167-6105(99)00064-1.
- JTG/T D60-01-2004 (2004), "Wind-resistent design specification for highway bridges ministry of transport of the people's Republic of China, Beijing", China (in Chinese).
- Kim, H.G., Lee, C.M., Lim, H.C. and Kyong, N.H. (1997), "An experimental and numerical study on the flow over two-dimensional hills", J. Wind Eng. Ind. Aerod., 66(1), 17-33. https://doi.org/10.1016/S0167-6105(97)00007-X.
- Li Y., Hu P., Xu X., and Qiu J., (2017), "Wind characteristics at bridge site in a deep-cutting gorge by wind tunnel test", J. Wind Eng. Ind. Aerodyn., 160, 30-46. https://doi.org/10.1016/j.jweia.2016.11.002
- Lystad, T.M., Fenerci, A. and Oiseth, O. (2018), "Evaluation of mast measurements and wind tunnel terrain models to describe spatially variable wind field characteristics for long-span bridge design", J. Wind Eng. Ind. Aerod., 179, 558-573. https://doi.org/10.1016/j.jweia.2018.06.021.
- Mattuella, J.M.L., Loredo-Souza, A.M., Oliveira, M.G.K., and Petry, A.P. (2016), "Wind tunnel experimental analysis of a complex terrain micrositing", Renew. Sustain. Energy Rev., 54, 110-119. https://doi.org/10.1016/j.rser.2015.09.088.
- Mingjin, Z., Jisheng, Y., Jingyu, Z., Lianhuo, W. and Yongle, L. (2019), "Study on the wind-field characteristics over a bridge site due to the shielding effects of mountains in a deep gorge via numerical simulation", Adv. Struct. Eng., 22(14), 3055-3065. https://doi.org/10.1177%2F1369433219857859. https://doi.org/10.1177/1369433219857859
- Pirooz, A.A.S. and Flay, R.G.J. (2018), "Comparison of speed-up over hills derived from wind-tunnel experiments, wind-loading standards and numerical modelling", Bound. Layer Meteorol., 168(2), 213-246. https://doi.org/10.1007/s10546-018-0350-x.
- Ramechecandane, S. and Gravdahl, A.R. (2012), "Numerical investigations on wind flow over complex terrain", Wind Eng., 36(3), 273-295. https://doi.org/10.1260%2F0309-524X.36.3.273. https://doi.org/10.1260/0309-524X.36.3.273
- Rasouli A., Hangan H., and Siddiqui K., (2009), "PIV measurements for a complex topographic terrain", J. Wind Eng. Ind. Aerodyn., 97(5), 242-254. https://doi.org/10.1016/j.jweia.2009.06.010
- Salmon, J.R. and Walmsley, J.L. (1999), "A two-site correlation model for wind speed, direction and energy estimates", J. Wind Eng. Ind. Aerod., 79(3), 233-268. https://doi.org/10.1016/S0167-6105(98)00119-6.
- Ti, Z., Wei, K., Li, Y. and Xu, B. (2020), "Effect of wave spectral variability on stochastic response of a long-span bridge subjected to random waves during tropical cyclones", J. Bridge Eng., 25(1), https://doi.org/10.1061/(ASCE)BE.1943-5592.0001517.
- Ti, Z., Zhang, M., Li, Y. and Wei, K. (2019), "Numerical study on the stochastic response of a long-span sea-crossing bridge subjected to extreme nonlinear wave loads", Eng. Struct., 196(1), https://doi.org/10.1016/j.engstruct.2019.109287.
- Wang, H., Li, A., Guo, T. and Xie, J. (2009), "Field measurement on wind characteristic and buffeting response of the Runyang Suspension Bridge during typhoon Matsa", Sci. China Ser. E Technol. Sci., 52(5), 1354-1362. https://doi.org/10.1007/s11431-008-0238-y.
- Wei, K., Zhang, J. and Qin, S. (2019), "Experimental and numerical assessment into frequency domain dynamic response of deep water rigid-frame bridge", J. Earthq. Eng., 1-24. https://doi.org/10.1080/13632469.2019.1684402.
- Xu, Y.L., Zhu, L.D., Wong, K.Y. and Chan, K.W.Y. (2000), "Field measurement results of Tsing Ma suspension Bridge during Typhoon Victor", Struct. Eng. Mech., 10(6), 545-559. https://doi.org/10.12989/sem.2000.10.6.545.
- Yang, D.H., Yi, T.H., Li, H.N. and Zhang, Y.F. (2018), "Monitoring-based analysis of the static and dynamic characteristic of wind actions for long-span cable-stayed bridge", J. Civ. Struct. Health Monit., 8(1), 5-15. https://doi.org/10.1007/s13349-017-0257-0.
- Yu, C., Li, Y., Zhang, M., Zhang, Y. and Zhai, G. (2019), "Wind characteristics along a bridge catwalk in a deep-cutting gorge from field measurements", J. Wind Eng. Ind. Aerod., 186, 94-104. https://doi.org/10.1016/j.jweia.2018.12.022.
- Zhang M. (2016), "Field measurement and numerical simulation of wind characteristics of bridge site in complex terrain", Ph. D. Dissertation, Southwest Jiaotong University, China.
- Zhang, J., Zhang, M., Li, Y. and Fang, C. (2020), "Comparison of wind characteristics at different heights of deep-cut canyon based on field measurement", Adv. Struct. Eng., 23(2), 219-233. https://doi.org/10.1177%2F1369433219868074. https://doi.org/10.1177/1369433219868074
- Zhang, M., Li, Y., Tang, H., Zhu, L. and Tao, Q. (2015), "Field measurement of wind characteristics at bridge site in deep gorge with high altitude and high temperature difference", China J. Highw. Transp., 28(3), 60-65.
- Zhang, M., Li, Y., Wang, B. and Ren, S. (2018), "Numerical simulation of wind characteristics at bridge site considering thermal effects", Adv. Struct. Eng., 21(9), 1313-1326. https://doi.org/10.1177%2F1369433217742524. https://doi.org/10.1177/1369433217742524
Cited by
- Characteristics of the Near-Ground Typhoon Morakot vol.2021, 2020, https://doi.org/10.1155/2021/9968586
- Fast simulation of large-scale non-stationary wind velocities based on adaptive interpolation reconstruction scheme vol.33, pp.1, 2020, https://doi.org/10.12989/was.2021.33.1.055