DOI QR코드

DOI QR Code

간세포암종과 혼합성 간세포암종-담관암종에서 다위상 전산단층촬영술 소견과 18F-FDG PET/CT에서 섭취율 차이에 대한 분석

Usefulness of 18F-FDG PET/CT and Multiphase CT in the Differential Diagnosis of Hepatocellular Carcinoma and Combined Hepatocellular Carcinoma-Cholangiocarcinoma

  • 박재춘 (고신대학교 의과대학 고신대학교 복음병원 영상의학과) ;
  • 박정구 (고신대학교 의과대학 고신대학교 복음병원 영상의학과) ;
  • 정규식 (고신대학교 의과대학 고신대학교 복음병원 영상의학과) ;
  • 강희 (고신대학교 의과대학 고신대학교 복음병원 영상의학과) ;
  • 전성민 (고신대학교 의과대학 고신대학교 복음병원 핵의학과)
  • Jae Chun Park (Department of Radiology, Kosin University Gospel Hospital, Kosin University College of Medicine) ;
  • Jung Gu Park (Department of Radiology, Kosin University Gospel Hospital, Kosin University College of Medicine) ;
  • Gyoo-Sik Jung (Department of Radiology, Kosin University Gospel Hospital, Kosin University College of Medicine) ;
  • Hee Kang (Department of Radiology, Kosin University Gospel Hospital, Kosin University College of Medicine) ;
  • Sungmin Jun (Department of Nuclear Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine)
  • 투고 : 2019.08.20
  • 심사 : 2020.01.28
  • 발행 : 2020.11.01

초록

목적 간세포암종과 혼합성 간세포암종-담관암종의 다위상 전산단층촬영술 소견과 18F-fluorodeoxyglucose 양전자방출단층촬영(이하 FDG PET/CT)에서 섭취율 차이를 연구하여 이들의 감별 진단에 유용성이 있는지를 알아보고자 하였다. 대상과 방법 2007년 1월에서 2016년 4월까지 조직학적으로 간세포성 암종으로 진단된 84명과 혼합성 간세포암종-담관암종으로 진단된 9명의 환자를 대상으로 하였다. 조영증강 양상은 유형 I (동맥기 조영증강과 지연기 조영유실), 유형 II (지연기 조영유실이 없는 동맥기 조영증강), 유형 III (저혈관성 병변, 침투성 양상 혹은 변연부 조영증강)로 구분하였고, PET/CT 소견은 FDG 섭취 여부에 따라서 양성과 음성으로 분류하였다. 결과 혼합성 간세포암종-담관암종(89%)은 간세포암종(61%)보다 PET/CT 섭취 양성률이 높았으나 통계적으로 유의한 차이는 보이지 않았다(p = 0.095). 유형 I 조영증강양상을 보이는 58개의 간세포암종 중 37예(64%)가 PET/CT에서 양성이었다. 유형 II 조영증강양상을 보이는 19예 중 간세포암종 3예(21%)에서 PET/CT에서 양성을 보였고 혼합 간세포암종-담관암종 4예(80%)에서 PET/CT 양성을 보였다. 유형 II 조영증강양상을 보이는 경우 혼합 간세포암-담관암종이 간세포암종보다 PET/CT 양성률이 유의하게 높았다(p = 0.020). 유형 III 조영증강 양상을 보이는 16예 중 간세포암 11예(91.6%), 혼합 간세포암-담관암종 4예(100%)에서 PET/CT 양성을 보였다. 유형 III 조영증강양상을 보이는 경우 간세포암과 혼합 간세포암-담관암종의 PET/CT 양성률의 유의한 차이는 보이지 않았다. 결론 유형 II 조영증강 양상을 보이는 경우 간세포암종과 혼합성 간세포암종-담관암종의 감별진단에 전산단층촬영술과 병행하는 18F-FDG PET/CT가 도움이 될 것으로 보인다.

Purpose The purpose of this study was to evaluate the usefulness of multiphasic CT and 18F-fluorodeoxyglucose (FDG) PET/CT for the differentiation of combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) from hepatocellular carcinoma (HCC). Materials and Methods From January 2007 to April 2016, 93 patients with pathologically confirmed HCC (n = 84) or cHCC-CCA (n = 9) underwent CT and PET/CT imaging. Contrast enhancement patterns were divided into three types based on the attenuation of the surrounding liver parenchyma: type I (early arterial enhancement with delayed washout), type II (early arterial enhancement without delayed washout), and type III (early hypovascular, infiltrative appearance, or peripheral rim enhancement). Results cHCC-CCAs (89%) had a higher PET/CT positive rate than did HCCs (61%), but the PET/CT positive rate did not differ significantly (p = 0.095). Among the 19 cases of the type II enhancement pattern, 3 (21%) of 14 HCCs and 4 (80%) of 5 cHCC-CCAs were PET/CT positive. cHCC-CCAs had a significantly higher PET/CT positive rate (p = 0.020) in the type II enhancement pattern. Conclusion The PET/CT positive rate of cHCC-CCA was significantly higher than that of HCC in lesions with a type II enhancement pattern. The 18F-FDG PET/CT can be useful for the differentiation of cHCC-CCA from HCC in lesions with a type II enhancement pattern on multiphasic CT.

키워드

참고문헌

  1. Joo I, Kim H, Lee JM. Cancer stem cells in primary liver cancers: pathological concepts and imaging findings. Korean J Radiol 2015;16:50-68 
  2. Lin G, Toh CH, Wu RC, Ko SF, Ng SH, Chou WC, et al. Combined hepatocellular cholangiocarcinoma: prognostic factors investigated by computed tomography/magnetic resonance imaging. Int J Clin Pract 2008;62:1199-1205 
  3. Brunt E, Aishima S, Clavien PA, Fowler K, Goodman Z, Gores G, et al. cHCC-CCA: consensus terminology for primary liver carcinomas with both hepatocytic and cholangiocytic differentation. Hepatology 2018;68:113-126 
  4. Akiba J, Nakashima O, Hattori S, Tanikawa K, Takenaka M, Nakayama M, et al. Clinicopathologic analysis of combined hepatocellular-cholangiocarcinoma according to the latest WHO classification. Am J Surg Pathol 2013;37:496-505 
  5. Sasaki M, Sato H, Kakuda Y, Sato Y, Choi JH, Nakanuma Y. Clinicopathological significance of 'subtypes with stem-cell feature' in combined hepatocellular-cholangiocarcinoma. Liver Int 2015;35:1024-1035 
  6. Shibahara J, Hayashi A, Misumi K, Sakamoto Y, Arita J, Hasegawa K, et al. Clinicopathologic characteristics of hepatocellular carcinoma with reactive ductule-like components, a subset of liver cancer currently classified as combined hepatocellular-cholangiocarcinoma with stem-cell features, typical subtype. Am J Surg Pathol 2016;40:608-616 
  7. Bota S, Piscaglia F, Marinelli S, Pecorelli A, Terzi E, Bolondi L. Comparison of international guidelines for noninvasive diagnosis of hepatocellular carcinoma. Liver Cancer 2012;1:190-200 
  8. Song DS, Bae SH. Changes of guidelines diagnosing hepatocellular carcinoma during the last ten-year period. Clin Mol Hepatol 2012;18:258-267 
  9. Kim SA, Lee JM, Lee KB, Kim SH, Yoon SH, Han JK, et al. Intrahepatic mass-forming cholangiocarcinomas: enhancement patterns at multiphasic CT, with special emphasis on arterial enhancement pattern--correlation with clinicopathologic findings. Radiology 2011;260:148-157 
  10. Shetty AS, Fowler KJ, Brunt EM, Agarwal S, Narra VR, Menias CO. Combined hepatocellular-cholangiocarcinoma: what the radiologist needs to know about biphenotypic liver carcinoma. Abdom Imaging 2014;39:310-322 
  11. Fukukura Y, Taguchi J, Nakashima O, Wada Y, Kojiro M. Combined hepatocellular and cholangiocarcinoma: correlation between CT findings and clinicopathological features. J Comput Assist Tomogr 1997;21:52-58 
  12. Nishie A, Yoshimitsu K, Asayama Y, Irie H, Aibe H, Tajima T, et al. Detection of combined hepatocellular and cholangiocarcinomas on enhanced CT: comparison with histologic findings. AJR Am J Roentgenol 2005;184:1157-1162 
  13. Iglehart JK. The new era of medical imaging--progress and pitfalls. N Engl J Med 2006;354:2822-2828 
  14. Khan MA, Combs CS, Brunt EM, Lowe VJ, Wolverson MK, Solomon H, et al. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol 2000;32:792-797 
  15. Wudel LJ Jr, Delbeke D, Morris D, Rice M, Washington MK, Shyr Y, et al. The role of [18F]fluorodeoxyglucose positron emission tomography imaging in the evaluation of hepatocellular carcinoma. Am Surg 2003;69:117-124; discussion 124-126 
  16. Kim JY, Kim MH, Lee TY, Hwang CY, Kim JS, Yun SC, et al. Clinical role of 18F-FDG PET-CT in suspected and potentially operable cholangiocarcinoma: a prospective study compared with conventional imaging. Am J Gastroenterol 2008;103:1145-1151 
  17. Kluge R, Schmidt F, Caca K, Barthel H, Hesse S, Georgi P, et al. Positron emission tomography with [18F]fluoro-2-deoxy-D-glucose for diagnosis and staging of bile duct cancer. Hepatology 2001;33:1029-1035 
  18. Loyer EM, Chin H, DuBrow RA, David CL, Eftekhari F, Charnsangavej C. Hepatocellular carcinoma and intrahepatic peripheral cholangiocarcinoma: enhancement patterns with quadruple phase helical CT--a comparative study. Radiology 1999;212:866-875 
  19. Centers for Disease Control and Prevention (CDC). Hepatocellular carcinoma - United States, 2001-2006. MMWR Morb Mortal Wkly Rep 2010;59:517-520 
  20. Khan AS, Hussain HK, Johnson TD, Weadock WJ, Pelletier SJ, Marrero JA. Value of delayed hypointensity and delayed enhancing rim in magnetic resonance imaging diagnosis of small hepatocellular carcinoma in the cirrhotic liver. J Magn Reson Imaging 2010;32:360-366 
  21. Marrero JA, Hussain HK, Nghiem HV, Umar R, Fontana RJ, Lok AS. Improving the prediction of hepatocellular carcinoma in cirrhotic patients with an arterially-enhancing liver mass. Liver Transpl 2005;11:281-289 
  22. Forner A, Vilana R, Ayuso C, Bianchi L, Sole M, Ayuso JR, et al. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology 2008;47:97-104 
  23. Rimola J, Forner A, Reig M, Vilana R, De Lope CR, Ayuso C, et al. Cholangiocarcinoma in cirrhosis: absence of contrast washout in delayed phases by magnetic resonance imaging avoids misdiagnosis of hepatocellular carcinoma. Hepatology 2009;50:791-798 
  24. Hatano E, Ikai I, Higashi T, Teramukai S, Torizuka T, Saga T, et al. Preoperative positron emission tomography with fluorine-18-fluorodeoxyglucose is predictive of prognosis in patients with hepatocellular carcinoma after resection. World J Surg 2006;30:1736-1741 
  25. Torizuka T, Tamaki N, Inokuma T, Magata Y, Sasayama S, Yonekura Y, et al. In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET. J Nucl Med 1995;36:1811-1817 
  26. Lee JD, Yang WI, Park YN, Kim KS, Choi JS, Yun M, et al. Different glucose uptake and glycolytic mechanisms between hepatocellular carcinoma and intrahepatic mass-forming cholangiocarcinoma with increased 18F-FDG uptake. J Nucl Med 2005;46:1753-1759 
  27. Kim YJ, Yun M, Lee WJ, Kim KS, Lee JD. Usefulness of 18F-FDG PET in intrahepatic cholangiocarcinoma. Eur J Nucl Med Mol Imaging 2003;30:1467-1472 
  28. Ijichi H, Shirabe K, Taketomi A, Yoshizumi T, Ikegami T, Mano Y, et al. Clinical usefulness of 18F-fluorodeoxyglucose positron emission tomography/computed tomography for patients with primary liver cancer with special reference to rare histological types, hepatocellular carcinoma with sarcomatous change and combined hepatocellular and cholangiocarcinoma. Hepatol Res 2013;43:481-487 
  29. Kojiro M. Histopathology of liver cancers. Best Pract Res Clin Gastroenterol 2005;19:39-62 
  30. Lim JH, Choi D, Park CK, Lee WJ, Lim HK. Encapsulated hepatocellular carcinoma: CT-pathologic correlations. Eur Radiol 2006;16:2326-2333