과제정보
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1C1C1008381), and Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2019-0-01750-002, Development of an optimal limb-compressing cardiovascular treatment device using deep learning technique) (No. 2020-0-00161-001, Active Machine Learning based on Open-set training for Surgical Video).
참고문헌
- Amato F, Lopez A, Pena-Mendez EM, Vanhara P, Hampl A, Havel J. Artificial neural networks in medical diagnosis. J Appl Biomed 2013;11:47-58 https://doi.org/10.2478/v10136-012-0031-x
- Ren J. ANN vs. SVM: which one performs better in classification of MCCs in mammogram imaging. Knowl Based Syst 2012;26:144-153 https://doi.org/10.1016/j.knosys.2011.07.016
- Cinar M, Engin M, Engin EZ, Atesci YZ. Early prostate cancer diagnosis by using artificial neural networks and support vector machines. Expert Syst Appl 2009;36:6357-6361 https://doi.org/10.1016/j.eswa.2008.08.010
- Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science 2006;313:504-507 https://doi.org/10.1126/science.1127647
- Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving neural networks by preventing co-adaptation of feature detectors. ArXiv Preprint 2012;arXiv:1207.0580
- Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. New York: Communications of the ACM 2012:1-9
- Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van den Driessche G, et al. Mastering the game of go with deep neural networks and tree search. Nature 2016;529:484-489 https://doi.org/10.1038/nature16961
- Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 2016;35:1299-1312 https://doi.org/10.1109/TMI.2016.2535302
- Chen J, Wang Y, Wu Y, Cai C. An ensemble of convolutional neural networks for image classification based on LSTM. Proceedings of 2017 International Conference on Green Informatics (ICGI); 2017 Aug 15-17; Fuzhou, China: ICGI; 2017:217-222
- Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK. Medical image analysis using convolutional neural networks: a review. J Med Syst 2018;42:226
- Wang Z, Yan W, Oates T. Time series classification from scratch with deep neural networks: a strong baseline. Proceedings of IJCNN 2017 : International Joint Conference on Neural Networks; 2017 May 14-19; Anchorage, AK, USA: IJCNN; 2017:1578-1585
- Philbrick KA, Yoshida K, Inoue D, Akkus Z, Kline TL, Weston AD, et al. What does deep learning see? Insights from a classifier trained to predict contrast enhancement phase from CT images. AJR Am J Roentgenol 2018;211:1184-1193 https://doi.org/10.2214/AJR.18.20331
- Bona JP, Prior FW, Zozus MN, Brochhausen M. Enhancing clinical data and clinical research data with biomedical ontologies - Insights from the knowledge representation perspective. Yearb Med Inform 2019;28:140-151 https://doi.org/10.1055/s-0039-1677912
- Basu A, Warzel D, Eftekhari A, Kirby JS, Freymann J, Knable J, et al. Call for data standardization: lessons learned and recommendations in an imaging study. JCO Clin Cancer Inform 2019;3:1-11 https://doi.org/10.1200/CCI.19.00056
- Aberle DR, Berg CD, Black WC, Church TR, Fagerstrom RM, Galen B, et al. The National Lung Screening Trial: overview and study design. Radiology 2011;258:243-253 https://doi.org/10.1148/radiol.10091808
- Yan K, Wang X, Lu L, Zhang L, Harrison AP, Bagheri M, et al. Deep lesion graphs in the wild: relationship learning and organization of significant radiology image findings in a diverse large-scale lesion database. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018 Jun 18-22; Salt Lake City, UT, USA: IEEE; 2018:9261-9270
- Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017 Jul 21-26; Honolulu, HI, USA: IEEE; 2017:2097-2106
- LaMontagne PJ, Benzinger TL, Morris JC, Keefe S, Hornbeck R, Xiong C, et al. OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. MedRxiv 2019 [in press] doi: https://doi.org/10.1101/2019.12.13.19014902
- Benndorf M, Herda C, Langer M, Kotter E. Provision of the DDSM mammography metadata in an accessible format. Med Phys 2014;41:051902
- Yu S, Xiao D, Frost S, Kanagasingam Y. Robust optic disc and cup segmentation with deep learning for glaucoma detection. Comput Med Imaging Graph 2019;74:61-71 https://doi.org/10.1016/j.compmedimag.2019.02.005
- Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods 2012;9:671-675 https://doi.org/10.1038/nmeth.2089
- Yushkevich PA, Gao Y, Gerig G. ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2016 Aug 17-20; Orlando, FL, USA: IEEE; 2016:3342-3345
- Russell BC, Torralba A, Murphy KP, Freeman WT. LabelMe: a database and web-based tool for image annotation. Int J Comput Vis 2008;77:157-173 https://doi.org/10.1007/s11263-007-0090-8
- Hansen US, Landau E, Patel M, Hayee BH. Novel artificial intelligence-driven software significantly shortens the time required for annotation in computer vision projects. MedRxiv 2020 [in press] doi: https://doi.org/10.1101/2020.09.11.20192500
- Liu H, Bielinski SJ, Sohn S, Murphy S, Wagholikar KB, Jonnalagadda SR, et al. An information extraction framework for cohort identification using electronic health records. AMIA Jt Summits Transl Sci Proc 2013;2013:149-153
- Mehta R, Arbel T. 3D U-Net for brain tumour segmentation. In International MICCAI Brainlesion Workshop. Cham: Springer 2018:254-266
- Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH. No new-net. In International MICCAI Brainlesion Workshop. Cham: Springer 2018:234-244
- Rahman T, Khandakar A, Kadir MA, Islam KR, Islam KF, Mazhar R, et al. Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization. IEEE Access 2020;8:191586-191601 https://doi.org/10.1109/ACCESS.2020.3031384
- Yang S, Kweon J, Roh JH, Lee JH, Kang H, Park LJ, et al. Deep learning segmentation of major vessels in X-ray coronary angiography. Sci Rep 2019;9:13897
- Antoniou A, Storkey A, Edwards H. Data augmentation generative adversarial networks. ArXiv Preprint 2017;arXiv:1711.04340
- Han C, Murao K, Noguchi T, Kawata Y, Uchiyama F, Rundo L, et al. Learning more with less: conditional PGGAN-based data augmentation for brain metastases detection using highly-rough annotation on MR images. Proceedings of the 28th ACM International Conference on Information and Knowledge Management; 2019 Nov 3-7; Beijing, China: CIKM; 2019:119-127
- Sandfort V, Yan K, Pickhardt PJ, Summers RM. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci Rep 2019;9:16884
- Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 2018;321:321-331 https://doi.org/10.1016/j.neucom.2018.09.013
- Xin B, Hu Y, Zheng Y, Liao H. Multi-modality generative adversarial networks with tumor consistency loss for brain MR image synthesis. Proceedings of 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI); 2020 Apr 3-7; Iowa City, IA, USA: IEEE; 2020:1803-1807
- Ning CY, Liu SF, Qu M. Research on removing noise in medical image based on median filter method. Proceedings of 2009 IEEE International Symposium on IT in Medicine & Education (ITME2009); 2009 Aug 14-16; Jinan, China: IEEE; 2009:384-388
- Cadena L, Zotin A, Cadena F, Korneeva A, Legalov A. Noise reduction techniques for processing of medical images. Proceedings of the World Congress on Engineering 2017; Jul 5-7; London, UK: World Congress on Engineering; 2017:5-9
- Wang Q, Chen L, Shen D. Fast histogram equalization for medical image enhancement. Proceedings of 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2008 Aug 20-25; Vancouver, BC, Canada: IEEE; 2008:2217-2220
- Reza AM. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J Signal Process Sys 2004;38:35-44 https://doi.org/10.1023/B:VLSI.0000028532.53893.82
- Hashemi M. Enlarging smaller images before inputting into convolutional neural network: zero-padding vs. interpolation. J Big Data 2019;6:98
- Smith LN. A disciplined approach to neural network hyper-parameters: part 1 -- learning rate, batch size, momentum, and weight decay. ArXiv Preprint 2018;arXiv:1803.09820
- Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016;35:1285-1298 https://doi.org/10.1109/TMI.2016.2528162
- Shi Z, Hao H, Zhao M, Feng Y, He L, Wang Y, et al. A deep CNN based transfer learning method for false positive reduction. Multimed Tools Appl 2019;78:1017-1033 https://doi.org/10.1007/s11042-018-6082-6
- Wong TT, Yeh PY. Reliable accuracy estimates from k-fold cross validation. IEEE Trans Knowl Data Eng 2020;32:1586-1594 https://doi.org/10.1109/TKDE.2019.2912815
- Bleeker SE, Moll HA, Steyerberg EW, Donders AR, Derksen-Lubsen G, Grobbee DE, et al. External validation is necessary in prediction research: a clinical example. J Clin Epidemiol 2003;56:826-832 https://doi.org/10.1016/S0895-4356(03)00207-5
- Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception-v4, inception-resnet and the impact of residual connections on learning. ArXiv Preprint 2016;arXiv:1602.07261
- Iandola F, Moskewicz M, Karayev S, Girshick R, Darrell T, Keutzer K. Densenet: implementing efficient convnet descriptor pyramids. ArXiv Preprint 2014;arXiv:1404.1869
- Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. ArXiv Preprint 2016;arXiv:1602.07360
- Li Y, Huang H, Xie Q, Yao L, Chen Q. Research on a surface defect detection algorithm based on MobileNet-SSD. Appl Sci 2018;8:1678
- Zhang X, Lin M, Sun J. Shufflenet: an extremely efficient convolutional neural network for mobile devices. Proceedings of the IEEE conference on computer vision and pattern recognition; 2018 Jun 19-21; Salt Lake City, UT, USA: IEEE; 2018:6848-6856
- Han S, Mao H, Dally WJ. Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding. ArXiv Preprint 2015;arXiv:1510.00149
- Chen G, Choi W, Yu X, Han T, Chandraker M. Learning efficient object detection models with knowledge distillation. Proceedings of Advances in Neural Information Processing Systems; 2017 Dec 4-7; Long Beach, CA, USA: NIPS; 2017:1-10
- Yim J, Joo D, Bae J, Kim J. A gift from knowledge distillation: fast optimization, network minimization and transfer learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21-26; Honolulu, HI, USA: IEEE; 2017:4133-4141