DOI QR코드

DOI QR Code

Normal Anatomy of Cranial Nerves III-XII on Magnetic Resonance Imaging

뇌신경 III-XII의 정상 자기공명영상 소견

  • Hyung-Jin Kim (Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Minjung Seong (Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Yikyung Kim (Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • 김형진 (성균관대학교 의과대학 삼성서울병원 영상의학과) ;
  • 성민정 (성균관대학교 의과대학 삼성서울병원 영상의학과) ;
  • 김이경 (성균관대학교 의과대학 삼성서울병원 영상의학과)
  • Received : 2020.04.06
  • Accepted : 2020.05.02
  • Published : 2020.05.01

Abstract

Because of the inherent complex anatomy and functional arrangement of the cranial nerves (CNs), neuroimaging of cranial neuropathy is challenging. With recent advances in magnetic resonance imaging (MRI) techniques, the cause of cranial neuropathy can now be detected in many cases. As an active multidisciplinary team member of cranial neuropathy, it is essential for the neuroradiologist to be familiar with the detailed anatomy of the CNs on MRI. This review contains the basic MRI anatomy of CNs III-XII according to a segmental classification from the brain stem to the extracranial region. The optimal imaging options to best evaluate the specific segment of the CNs will also be discussed briefly.

복잡한 해부학적 구조와 기능 때문에 뇌신경 질환의 신경영상검사는 항상 어려운 과제이다. 최근 자기공명영상(이하 MRI) 기법의 발달로 많은 경우에서 뇌신경 질환의 원인이 규명되고 있으며, 신경영상의학 의사들은 다학제 팀의 핵심적 팀원으로서 다양한 뇌신경 질환의 원활한 진단을 위하여 MRI에서 관찰되는 뇌신경의 세밀한 해부학적 구조를 잘 알아야 한다. 이 종설에서는 말초성 뇌신경 III-XII에 대해 뇌간으로부터 두개 밖까지 해부학적으로 비슷한 구조를 가지는 구역별로 분류하여 각 구역에서 보이는 뇌신경의 정상 해부학 및 MRI 소견을 설명하고자 한다. 또한 각 구역에서 가장 적합한 MRI 기법에 관하여도 기술하고자 한다.

Keywords

References

  1. Nolte J. The human brain: an introduction to its functional anatomy. St. Louis: Mosby-Year Book 1993:154-245
  2. Kelly WM. Functional anatomy and cranial neuropathy: neuroimaging perspective. Neuroimaging Clin N Am 1993;3:1-45
  3. Casselman J, Mermuys K, Delanote J, Ghekiere J, Coenegrachts K. MRI of the cranial nerves--more than meets the eye: technical considerations and advanced anatomy. Neuroimaging Clin N Am 2008;18:197-231
  4. Blitz AM, Choudhri AF, Chonka ZD, Ilica AT, Macedo LL, Chhabra A, et al. Anatomic considerations, nomenclature, and advanced cross-sectional imaging techniques for visualization of the cranial nerve segments by MR imaging. Neuroimaging Clin N Am 2014;24:1-15
  5. Kim HJ. Cranial nerve imaging. Practical Neurology Grand Round 2014;6:48-74
  6. Cha J, Kim E. Cranial nerve. In Kim HJ, Lee JH, eds. Head and neck radiology. Seoul: Panmuneducation 2015:203-253
  7. Tomii M, Onoue H, Yasue M, Tokudome S, Abe T. Microscopic measurement of the facial nerve root exit zone from central glial myelin to peripheral Schwann cell myelin. J Neurosurg 2003;99:121-124
  8. Campos-Benitez M, Kaufmann AM. Neurovascular compression findings in hemifacial spasm. J Neurosurg 2008;109:416-420
  9. Hughes MA, Branstetter BF, Taylor CT, Fakhran S, Delfyett WT, Frederickson AM, et al. MRI findings in patients with a history of failed prior microvascular decompression for hemifacial spasm: how to image and where to look. AJNR Am J Neuroradiol 2015;36:768-773
  10. Nagae-Poetscher LM, Jiang H, Wakana S, Golay X, Van Zijl PC, Mori S. High-resolution diffusion tensor imaging of the brain stem at 3 T. AJNR Am J Neuroradiol 2004;25:1325-1330
  11. Adachi M, Kabasawa H, Kawaguchi E. Depiction of the cranial nerves within the brain stem with use of PROPELLER multishot diffusion-weighted imaging. AJNR Am J Neuroradiol 2008;29:911-912
  12. Yamada K, Shiga K, Kizu O, Ito H, Akiyama K, Nakagawa M, et al. Oculomotor nerve palsy evaluated by diffusion-tensor tractography. Neuroradiology 2006;48:434-437
  13. Kim HJ, Choi CG, Lee JH, Yang PS, Kang S, Lee YS, et al. Brain diffusion tensor MR imaging. J Korean Radiol Soc 2005;53:233-243
  14. De Ridder D, Moller A, Verlooy J, Cornelissen M, De Ridder L. Is the root entry/exit zone important in microvascular compression syndromes? Neurosurgery 2002;51:427-433; discussion 433-434
  15. Guclu B, Sindou M, Meyronet D, Streichenberger N, Simon E, Mertens P. Cranial nerve vascular compression syndromes of the trigeminal, facial and vago-glossopharyngeal nerves: comparative anatomical study of the central myelin portion and transitional zone; correlations with incidences of corresponding hyperactive dysfunctional syndromes. Acta Neurochir (Wien) 2011;153:2365-2375
  16. Haller S, Etienne L, Kovari E, Varoquaux AD, Urbach H, Becker M. Imaging of neurovascular compression syndromes: trigeminal neuralgia, hemifacial spasm, vestibular paroxysmia, and glossopharyngeal neuralgia. AJNR Am J Neuroradiol 2016;37:1384-1392
  17. Choi BS, Kim JH, Jung C, Hwang JM. High-resolution 3D MR imaging of the trochlear nerve. AJNR Am J Neuroradiol 2010;31:1076-1079
  18. Yousry I, Moriggl B, Holtmannspoetter M, Schmid UD, Naidich TP, Yousry TA. Detailed anatomy of the motor and sensory roots of the trigeminal nerve and their neurovascular relationships: a magnetic resonance imaging study. J Neurosurg 2004;101:427-434
  19. Burmeister HP, Baltzer PA, Dietzel M, Krumbein I, Bitter T, Schrott-Fischer A, et al. Identification of the nervus intermedius using 3T MR imaging. AJNR Am J Neuroradiol 2011;32:460-464
  20. Casselman JW, Kuhweide R, Deimling M, Ampe W, Dehaene I, Meeus L. Constructive interference in steady state-3DFT MR imaging of the inner ear and cerebellopontine angle. AJNR Am J Neuroradiol 1993;14:47-57
  21. Everton KL, Rassner UA, Osborn AG, Harnsberger HR. The oculomotor cistern: anatomy and high-resolution imaging. AJNR Am J Neuroradiol 2008;29:1344-1348
  22. Blitz AM, Macedo LL, Chonka ZD, Ilica AT, Choudhri AF, Gallia GL, et al. High-resolution CISS MR imaging with and without contrast for evaluation of the upper cranial nerves: segmental anatomy and selected pathologic conditions of the cisternal through extraforaminal segments. Neuroimaging Clin N Am 2014;24:17-34
  23. Bunch PM, Kelly HR, Zander DA, Curtin HD. Trochlear groove and trochlear cistern: useful anatomic landmarks for identifying the tentorial segment of cranial nerve IV on MRI. AJNR Am J Neuroradiol 2017;38:1926-1030
  24. Yousry I, Moriggl B, Schmid UD, Naidich TP, Yousry TA. Trigeminal ganglion and its divisions: detailed anatomic MR imaging with contrast-enhanced 3D constructive interference in the steady state sequences. AJNR Am J Neuroradiol 2005;26:1128-1135
  25. Moon WJ, Roh HG, Chung EC. Detailed MR imaging anatomy of the cisternal segments of the glossopharyngeal, vagus, and spinal accessory nerves in the posterior fossa: the use of 3D balanced fast-field echo MR imaging. AJNR Am J Neuroradiol 2009;30:1116-1120
  26. Ono K, Arai H, Endo T, Tsunoda A, Sato K, Sakai T, et al. Detailed MR imaging anatomy of the abducent nerve: evagination of CSF into Dorello canal. AJNR Am J Neuroradiol 2004;25:623-626
  27. Noble DJ, Scoffings D, Ajithkumar T, Williams MV, Jefferies SJ. Fast imaging employing steady-state acquisition (FIESTA) MRI to investigate cerebrospinal fluid (CSF) within dural reflections of posterior fossa cranial nerves. Br J Radiol 2016;89:20160392
  28. Blitz AM, Aygun N, Herzka DA, Ishii M, Gallia GL. High resolution three-dimensional MR imaging of the skull base: compartments, boundaries, and critical structures. Radiol Clin North Am 2017;55:17-30
  29. Linn J, Peters F, Lummel N, Schankin C, Rachinger W, Brueckmann H, et al. Detailed imaging of the normal anatomy and pathologic conditions of the cavernous region at 3 Tesla using a contrast-enhanced MR angiography. Neuroradiology 2011;53:947-954
  30. Yagi A, Sato N, Taketomi A, Nakajima T, Morita H, Koyama Y, et al. Normal cranial nerves in the cavernous sinuses: contrast-enhanced three-dimensional constructive interference in the steady state MR imaging. AJNR Am J Neuroradiol 2005;26:946-950
  31. Maroldi R, Farina D, Borghesi A, Marconi A, Gatti E. Perineural tumor spread. Neuroimaging Clin N Am 2008;18:413-429, xi
  32. Ginsberg LE, De Monte F, Gillenwater AM. Greater superficial petrosal nerve: anatomy and MR findings in perineural tumor spread. AJNR Am J Neuroradiol 1996;17:389-393
  33. Gebarski SS, Telian SA, Niparko JK. Enhancement along the normal facial nerve in the facial canal: MR imaging and anatomic correlation. Radiology 1992;183:391-394
  34. Kim HJ, Weon YC, Kim YK, Lee JY. Skull base. In Kim HJ, Lee JH, eds. Head and neck radiology. Seoul: Panmuneducation 2015:145-201
  35. Linn J, Peters F, Moriggl B, Naidich TP, Bruckmann H, Yousry I. The jugular foramen: imaging strategy and detailed anatomy at 3T. AJNR Am J Neuroradiol 2009;30:34-41
  36. Ong CK, Fook-Hin Chong V. Imaging of jugular foramen. Neuroimaging Clin N Am 2009;19:469-482
  37. Ginsberg LE. Perineural tumor spread associated with head and neck malignancies. In Som PM, Curtin HD, eds. Head and neck imaging. 5th ed. St.Louis: Mosby 2011:1022-1049
  38. Schmalfuss IM, Tart RP, Mukherji S, Mancuso AA. Perineural tumor spread along the auriculotemporal nerve. AJNR Am J Neuroradiol 2002;23:303-311
  39. Soldatos T, Batra K, Blitz AM, Chhabra A. Lower cranial nerves. Neuroimaging Clin N Am 2014;24:35-47
  40. Policeni BA, Smoker WR. Pathologic conditions of the lower cranial nerves IX, X, XI, and XII. Neuroimaging Clin N Am 2008;18:347-368, xi
  41. Naganawa S, Ishihara S, Satake H, Kawai H, Sone M, Nakashima T. Simultaneous three-dimensional visualization of the intra-parotid facial nerve and parotid duct using a three-dimensional reversed FISP sequence with diffusion weighting. Magn Reson Med Sci 2010;9:153-158
  42. Chu J, Zhou Z, Hong G, Guan J, Li S, Rao L, et al. High-resolution MRI of the intraparotid facial nerve based on a microsurface coil and a 3D reversed fast imaging with steady-state precession DWI sequence at 3T. AJNR Am J Neuroradiol 2013;34:1643-1648
  43. Qin Y, Zhang J, Li P, Wang Y. 3D double-echo steady-state with water excitation MR imaging of the intraparotid facial nerve at 1.5T: a pilot study. AJNR Am J Neuroradiol 2011;32:1167-1172
  44. Fujii H, Fujita A, Yang A, Kanazawa H, Buch K, Sakai O, et al. Visualization of the peripheral branches of the mandibular division of the trigeminal nerve on 3D double-echo steady-state with water excitation sequence. AJNR Am J Neuroradiol 2015;36:1333-1337
  45. Fujii H, Fujita A, Kanazawa H, Sung E, Sakai O, Sugimoto H. Localization of parotid gland tumors in relation to the intraparotid facial nerve on 3D double-echo steady-state with water excitation sequence. AJNR Am J Neuroradiol 2019;40:1037-1042