DOI QR코드

DOI QR Code

Dynamic responses of laminated beams under a moving load in thermal environment

  • Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University, Yildirim Campus)
  • 투고 : 2019.12.07
  • 심사 : 2020.05.25
  • 발행 : 2020.06.25

초록

The goal of this study is to investigate dynamic responses of laminated composite beams under a moving load with thermal effects. The governing equations of problem are derived by using the Lagrange procedure. The transverse-shear strain and rotary inertia are considered within the Timoshenko beam theory. The material properties of laminas are considered as the temperature dependent physical property. The differential equations of the problem are solved by the Ritz method. The solution step of dynamic problem, the Newmark average acceleration method is used in the time history. A compassion study is performed for accuracy of used formulations and method. In the numerical results, the effects of velocity of moving load, temperature values, the fiber orientation angles and the stacking sequence of laminas on the dynamic responses of the composite laminated beam are investigated.

키워드

참고문헌

  1. Abdelrahman, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M. and Hendy, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489.
  2. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  3. Akbas, S.D. and Kocaturk, T. (2012), "Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading", Struct. Eng. Mech., 44(1), 109-125. https://doi.org/10.12989/sem.2012.44.1.109.
  4. Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Therm. Stresses, 36(12), 1233-1254. https://doi.org/10.1080/01495739.2013.788397.
  5. Akbas, S.D. (2014), "Free vibration of axially functionally graded beams in thermal environment", Inte. J. Eng. Appl. Sci.., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224.
  6. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
  7. Akbas, S.D. (2017a), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(05), 1750076. https://doi.org/10.1142/S1758825117500764.
  8. Akbas, S.D. (2017b), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
  9. Akbas, S.D. (2018a), "Nonlinear thermal displacements of laminated composite beams", Coupled Syst. Mech., 7(6), 691-705. https://doi.org/10.12989/csm.2018.7.6.691.
  10. Akbas, S.D. (2018b), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech.s, 67(4), 337-346. https://doi.org/10.12989/sem.2018.67.4.337.
  11. Akbas, S.D. (2019a), "Hygrothermal post-buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(01), 1950009. https://doi.org/10.1142/S1758825119500091.
  12. Akbas, S.D. (2019b), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., 72(4), 433-441. https://doi.org/10.12989/sem.2019.72.4.433.
  13. Akbas, S.D. (2019c), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Comput. Mech.., 5(2), 477-485. https://doi.org/10.22055/jacm.2018.26819.1360.
  14. Akbas, S.D. (2019d), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupled Syst. Mech., 8(5), 459-471. https://doi.org/10.12989/csm.2019.8.5.459.
  15. Bahmyari, E., Mohebpour, S.R. and Malekzadeh, P. (2014), "Vibration analysis of inclined laminated composite beams under moving distributed masses", Shock Vib., 2014. http://dx.doi.org/10.1155/2014/750916.
  16. Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287.
  17. Chen, Y., Fu, Y., Zhong, J. and Tao, C. (2017), "Nonlinear dynamic responses of fiber-metal laminated beam subjected to moving harmonic loads resting on tensionless elastic foundation", Compos. Part B: Eng., 131, 253-259. https://doi.org/10.1016/j.compositesb.2017.07.051.
  18. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  19. Ebrahimi, F. and Barati, M.R. (2016), "Electromechanical buckling behavior of smart piezoelectrically actuated higher-order sizedependent graded nanoscale beams in thermal environment", Int. J. Smart Nano Mater., 7(2), 69-90. https://doi.org/10.1080/19475411.2016.1191556.
  20. Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magnetoelectrical field in thermal environment", J. Vib. Control, 24(3), 549-564. https://doi.org/10.1177/1077546316646239.
  21. Ghayesh, M.H. (2018a), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004.
  22. Ghayesh, M.H. (2018b), "Nonlinear dynamics of multilayered microplates", J. Comput. Nonlinear Dynam., 13(2), 021006. https://doi.org/10.1115/1.4037596.
  23. Ghayesh, M.H. (2019), "Dynamical analysis of multilayered cantilevers", Commun. Nonlinear Sci. Numer. Simul., 71, 244-253. https://doi.org/10.1016/j.cnsns.2018.08.012.
  24. Hadji, L., Daouadji, T.H., Tounsi, A. and Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507.
  25. Karnaukhov, V.G. and Kirichok, I.F. (2005), "Vibrations and dissipative heating of a viscoelastic beam under a moving load", Int. Appl. Mech., 41(1), 49-55. https://doi.org/10.1007/s10778-005-0057-9.
  26. Kocaturk, T. and Akbas, S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading", Struct. Eng. Mech., 40(3), 347-371. https://doi.org/10.12989/sem.2011.40.3.347.
  27. Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading", Struct. Eng. Mech., 41(6), 775-789. https://doi.org/10.12989/sem.2012.41.6.775.
  28. Li Z.M. and Qiao P. (2015), "Buckling and postbuckling behavior of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression", Eng. Struct., 85, 277-292. https://doi.org/10.1016/j.engstruct.2014.12.028.
  29. Li, Y. H., Wang, L. and Yang, E.C. (2018), "Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads", Int. J. Nonlinear Mech., 101, 56-67. https://doi.org/10.1016/j.ijnonlinmec.2018.02.007.
  30. Malekzadeh, P. and Monajjemzadeh, S.M. (2016), "Dynamic response of functionally graded beams in a thermal environment under a moving load", Mech. Adv. Mater. Struct., 23(3), 248-258. https://doi.org/10.1080/15376494.2014.949930.
  31. Mazur-Sniady, K., Sniady, P. and Zielichowski-Haber, W. (2009), "Dynamic response of micro-periodic composite rods with uncertain parameters under moving random load", J. Sound Vib.n, 320(1-2), 273-288. https://doi.org/10.1016/j.jsv.2008.08.004.
  32. Shen H.S. (2001), "Thermal postbuckling behavior of imperfect shear deformable laminated plates with temperature-dependent properties", Comput. Method. Appl. M., 190, 5377-5390. https://doi.org/10.1016/S0045-7825(01)00172-4.
  33. Tao, C., Fu, Y.M. and Dai, H.L. (2016), "Nonlinear dynamic analysis of fiber metal laminated beams subjected to moving loads in thermal environment", Compos. Struct., 140, 410-416. https://doi.org/10.1016/j.compstruct.2015.12.011.
  34. Vinson J.R. and Sierakowski R.L. (2006), The behavior of Structures Composed of Composite Materials, Springer Science & Business Media, Netherlands.
  35. Vosoughi, A.R. and Anjabin, N. (2017), "Dynamic moving load identification of laminated composite beams using a hybrid FE-TMDQ-GAs method", Inverse Problems in Sci. Eng., 25(11), 1639-1652. https://doi.org/10.1080/17415977.2016.1275613.
  36. Yuksel, Y.Z. and Akbas, S.D. (2018), "Free vibration analysis of a cross-ply laminated plate in thermal environment", Int. J. Eng. Appl. Sci.10(3), 176-189. https://doi.org/10.24107/ijeas.456755.
  37. Wang, Y. and Wu, D. (2016), "Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load", Acta Astronautica, 127, 171-181. https://doi.org/10.1016/j.actaastro.2016.05.030.

피인용 문헌

  1. Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.263
  2. On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149