참고문헌
- Abdelrahman, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M. and Hendy, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489.
- Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
- Akbas, S.D. and Kocaturk, T. (2012), "Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading", Struct. Eng. Mech., 44(1), 109-125. https://doi.org/10.12989/sem.2012.44.1.109.
- Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Therm. Stresses, 36(12), 1233-1254. https://doi.org/10.1080/01495739.2013.788397.
- Akbas, S.D. (2014), "Free vibration of axially functionally graded beams in thermal environment", Inte. J. Eng. Appl. Sci.., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224.
- Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
- Akbas, S.D. (2017a), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(05), 1750076. https://doi.org/10.1142/S1758825117500764.
- Akbas, S.D. (2017b), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
- Akbas, S.D. (2018a), "Nonlinear thermal displacements of laminated composite beams", Coupled Syst. Mech., 7(6), 691-705. https://doi.org/10.12989/csm.2018.7.6.691.
- Akbas, S.D. (2018b), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech.s, 67(4), 337-346. https://doi.org/10.12989/sem.2018.67.4.337.
- Akbas, S.D. (2019a), "Hygrothermal post-buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(01), 1950009. https://doi.org/10.1142/S1758825119500091.
- Akbas, S.D. (2019b), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., 72(4), 433-441. https://doi.org/10.12989/sem.2019.72.4.433.
- Akbas, S.D. (2019c), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Comput. Mech.., 5(2), 477-485. https://doi.org/10.22055/jacm.2018.26819.1360.
- Akbas, S.D. (2019d), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupled Syst. Mech., 8(5), 459-471. https://doi.org/10.12989/csm.2019.8.5.459.
- Bahmyari, E., Mohebpour, S.R. and Malekzadeh, P. (2014), "Vibration analysis of inclined laminated composite beams under moving distributed masses", Shock Vib., 2014. http://dx.doi.org/10.1155/2014/750916.
- Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287.
- Chen, Y., Fu, Y., Zhong, J. and Tao, C. (2017), "Nonlinear dynamic responses of fiber-metal laminated beam subjected to moving harmonic loads resting on tensionless elastic foundation", Compos. Part B: Eng., 131, 253-259. https://doi.org/10.1016/j.compositesb.2017.07.051.
- Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
- Ebrahimi, F. and Barati, M.R. (2016), "Electromechanical buckling behavior of smart piezoelectrically actuated higher-order sizedependent graded nanoscale beams in thermal environment", Int. J. Smart Nano Mater., 7(2), 69-90. https://doi.org/10.1080/19475411.2016.1191556.
- Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magnetoelectrical field in thermal environment", J. Vib. Control, 24(3), 549-564. https://doi.org/10.1177/1077546316646239.
- Ghayesh, M.H. (2018a), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004.
- Ghayesh, M.H. (2018b), "Nonlinear dynamics of multilayered microplates", J. Comput. Nonlinear Dynam., 13(2), 021006. https://doi.org/10.1115/1.4037596.
- Ghayesh, M.H. (2019), "Dynamical analysis of multilayered cantilevers", Commun. Nonlinear Sci. Numer. Simul., 71, 244-253. https://doi.org/10.1016/j.cnsns.2018.08.012.
- Hadji, L., Daouadji, T.H., Tounsi, A. and Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507.
- Karnaukhov, V.G. and Kirichok, I.F. (2005), "Vibrations and dissipative heating of a viscoelastic beam under a moving load", Int. Appl. Mech., 41(1), 49-55. https://doi.org/10.1007/s10778-005-0057-9.
- Kocaturk, T. and Akbas, S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading", Struct. Eng. Mech., 40(3), 347-371. https://doi.org/10.12989/sem.2011.40.3.347.
- Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading", Struct. Eng. Mech., 41(6), 775-789. https://doi.org/10.12989/sem.2012.41.6.775.
- Li Z.M. and Qiao P. (2015), "Buckling and postbuckling behavior of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression", Eng. Struct., 85, 277-292. https://doi.org/10.1016/j.engstruct.2014.12.028.
- Li, Y. H., Wang, L. and Yang, E.C. (2018), "Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads", Int. J. Nonlinear Mech., 101, 56-67. https://doi.org/10.1016/j.ijnonlinmec.2018.02.007.
- Malekzadeh, P. and Monajjemzadeh, S.M. (2016), "Dynamic response of functionally graded beams in a thermal environment under a moving load", Mech. Adv. Mater. Struct., 23(3), 248-258. https://doi.org/10.1080/15376494.2014.949930.
- Mazur-Sniady, K., Sniady, P. and Zielichowski-Haber, W. (2009), "Dynamic response of micro-periodic composite rods with uncertain parameters under moving random load", J. Sound Vib.n, 320(1-2), 273-288. https://doi.org/10.1016/j.jsv.2008.08.004.
- Shen H.S. (2001), "Thermal postbuckling behavior of imperfect shear deformable laminated plates with temperature-dependent properties", Comput. Method. Appl. M., 190, 5377-5390. https://doi.org/10.1016/S0045-7825(01)00172-4.
- Tao, C., Fu, Y.M. and Dai, H.L. (2016), "Nonlinear dynamic analysis of fiber metal laminated beams subjected to moving loads in thermal environment", Compos. Struct., 140, 410-416. https://doi.org/10.1016/j.compstruct.2015.12.011.
- Vinson J.R. and Sierakowski R.L. (2006), The behavior of Structures Composed of Composite Materials, Springer Science & Business Media, Netherlands.
- Vosoughi, A.R. and Anjabin, N. (2017), "Dynamic moving load identification of laminated composite beams using a hybrid FE-TMDQ-GAs method", Inverse Problems in Sci. Eng., 25(11), 1639-1652. https://doi.org/10.1080/17415977.2016.1275613.
- Yuksel, Y.Z. and Akbas, S.D. (2018), "Free vibration analysis of a cross-ply laminated plate in thermal environment", Int. J. Eng. Appl. Sci.10(3), 176-189. https://doi.org/10.24107/ijeas.456755.
- Wang, Y. and Wu, D. (2016), "Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load", Acta Astronautica, 127, 171-181. https://doi.org/10.1016/j.actaastro.2016.05.030.
피인용 문헌
- Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.263
- On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149