DOI QR코드

DOI QR Code

Distortional effect on global buckling and post-buckling behaviour of steel box beams

  • Benmohammed, Noureddine (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Djillali Liabes) ;
  • Ziane, Noureddine (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Djillali Liabes) ;
  • Meftah, Sid Ahmed (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Djillali Liabes) ;
  • Ruta, Giuseppe (Department of Structural & Geotechnical Engineering, University 'La Sapienza')
  • 투고 : 2019.08.03
  • 심사 : 2020.05.30
  • 발행 : 2020.06.25

초록

The homotopy perturbation method (HPM) to predict the pre- and post-buckling behaviour of simply supported steel beams with rectangular hollow section (RHS) is presented in this paper. The non-linear differential equations solved by HPM derive from a kinematics where large twist and cross-sections distortions are considered. The results (linear and non-linear paths) given by the present HPM are compared to those provided by the Newton-Raphson algorithm with arc length and by the commercial FEM code Abaqus. To investigate the effect of cross-sectional distortion of beams, some numerical examples are presented.

키워드

과제정보

We acknowledge the support of institutional grants of the Algerian Directorate General for Scientific Research and Technological Development. Thanks are also due to "La Sapienza" University, Rome, Italy, for the cooperation.

참고문헌

  1. Abaqus Standard User's Manual, Version 6.4. (2003), Hibbit, Karlsson and Sorensen Inc., Pawtucket, RI, USA.
  2. Bebiano, R., Basaglia, C., Camotim, E. and Gonçalves, R. (2018), "GBT buckling analysis of generally loaded thin-walled members with arbitrary flat-walled cross-sections", Thin-Wall. Struct., 123, 11-24. https://doi.org/10.1016/j.tws.2017.10.04.
  3. Benscoter, S.U. (1954), "A theory of torsion bending for multicell beams", J. Appl. Mech., 20, 25-34. https://doi.org/10.1115/1.4010814
  4. Ed-dinari A., Mottaqui, H., Braikat, B., Jamal, M., Mohri, F. and Damil, N. (2014), "Large torsion analysis of thin-walled open sections beams by the Asymptotic Numerical Method", Eng. Struct., 81, 240-255. https://doi.org/10.1016/j.engstruct.2014.09.045.
  5. Esmaeilpour, M. And Ganji, D.D. (2007), "Application of He's homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate", Phys. Lett. A, 372(1), 33-38. https://doi.org/10.1016/j.physleta.2007.07.002.
  6. Ferrarotti, A., Ranzi, G., Taig, G. and Piccardo, G. (2017), "Partial interaction analysis of multi-component members within the GBT", Steel Compos. Struct., 25(5), 625-638. https://doi.org/10.12989/scs.2017.25.5.625.
  7. GBTUL, Version 2.0.4.3 (2013), The Generalised Beam Theory Research Group, Instituto superior Tecnico, Lisbon, Portugal.
  8. Gonçalves, R. and Camotim, D. (2004), "Buckling analysis of single and multi-cell closed thin-walled metal members using Generalised Beam Theory", Proceedings of the 4th International Conference On Coupled Instabilities In Metal Structures, Rome, 27-29/9.
  9. Gonçalves, R. and Camotim, D. (2010), "Steel-concrete composite bridge analysis using generalised beam theory", Steel Compos. Struct., 10(3), 223-243. https://doi.org/10.12989/scs.2010.10.3.223.
  10. He, J.H. (2006), "Homotopy perturbation method for solving boundary value problems", Phys. Lett. A, 350, 87-88. https://doi.org/10.1016/j.physleta.2005.10.005.
  11. Jafarimoghaddam, A.(2019), "On the Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM) for a nonlinearly stretching sheet flow of Eyring-Powell fluids", Eng. Sci. Technol. Int. J., 22(2), 439-451. https://doi.org/10.1016/j.jestch.2018.11.001.
  12. Jang, G.W., Kim, K.J. and Kim, Y.Y. (2008), "Higher-order beam analysis of box beams connected at angled joints subject to out-of-plane bending and torsion", Int. J. Numer. Method. Eng., 75(11), 1361-1384. https://doi.org/10.1002/nme.2314.
  13. Kanishchev, R. and Kvocak, V. (2019), "Local buckling of rectangular steel tubes filled with concrete", Steel Compos. Struct., 31(2), 201-216. https://doi.org/10.12989/SCS.2019.31.2.201
  14. Kim, C. and White, S.R. (1997), "Thick-walled composite beam theory including 3-d elastic effects and torsional warping", lnt. J. Solids Struct., 34, 4237-4259. https://doi.org/10.1016/S0020-7683(96)00072-8.
  15. Kim, J.H. and Kim, Y.Y. (1999), "Analysis of thin-walled closed beams with general quadrilateral cross sections", J. Appl. Mech., 66, 904-912. https://doi.org/10.1115/1.2791796.
  16. Kim, J. H. and Kim, Y.Y. (2001), "Thin-walled multicell beam analysis for coupled torsion, distortion, and warping deformations", J. Appl. Mech., 68, 260-269. https://doi.org/10.1115/1.1357166.
  17. Kim N.I. (2009), "Dynamic stiffness matrix of composite box beams", Steel Compos. Struct., 9(5), 473-497. https://doi.org/10.12989/scs.2009.9.5.473.
  18. Kim N.I., Shin, D.K. and Park, Y.S. (2010), "Coupled stability analysis of thin-walled composite beams with closed cross-section", Thin-Wall. Struct., 48(8), 581-596. https://doi.org/10.1016/j.tws.2010.03.006.
  19. Lanc, D. Vo, T.P., Turkalj, G. and Lee, J. (2015), "Buckling analysis of thin-walled functionally graded sandwich box beams", Thin-Wall. Struct., 86, 148-156. https://doi.org/10.1016/j.tws.2014.10.006.
  20. Librescu, L. and Song, O. (2006), Thin-Walled Composite Beams Theory and Application, Springer, Dordrecht, Netherlands.
  21. Loughlan, J. and Ata, M. (1997), "The behaviour of open and closed section carbon fibre composite beams subjected to constrained torsion", Compos. Struct., 38(1-4), 631-647. https://doi.org/10.1016/S0263-8223(97)00101-3.
  22. Mentrasti, L. (1990), "Distortion (and Torsion) of rectangular thin-walled beams", Thin- Wall. Struct., 10(3), 175-193. https://doi.org/10.1016/0263-8231(90)90062-4.
  23. Mohri, F., Azrar, L. and Potier-Ferry, M. (2002), "Lateral post-buckling analysis of thin-walled open section beams", Thin-Wall. Struct., 40(12), 1013-1036. https://doi.org/10.1016/S0263-8231(02)00043-5.
  24. Piovan, M.T. and Machado, S.P. (2011), "Thermo elastic dynamic stability of thin-walled beams with graded material properties", Thin-Wall. Struct., 49(3), 437-447. https://doi.org/10.1016/j.tws.2010.11.002.
  25. Pluzsik, A. and Kollar, L.P. (2006), "Torsion of closed section, orthotropic, thin-walled beams", Int. J. Solids Struct., 43(17), 5307-5336. https://doi.org/10.1016/j.ijsolstr.2005.08.001.
  26. Ren, Y., Cheng, W., Wang, Y. and Wang, B. (2017), "Analysis of the distortion of cantilever box girder with inner flexible diaphragms using initial parameter method", Thin-Wall. Struct., 117, 140-154. https://doi.org/10.1016/j.tws.2017.04.010.
  27. Ren, Y., Cheng, W., Wang, Y., Chen, Q. and Wang, B. (2017), "Distortional analysis of simply supported box girders with inner diaphragms considering shear deformation of diaphragms using initial parameter method", Eng. Struct., 145, 44-59. https://doi.org/10.1016/j.engstruct.2017.05.004.
  28. Saoula, A., Meftah, S.A., Mohri, F. and Daya, E.M. (2016), "Lateral buckling of box beam elements under combined axial and bending loads", J. Constr. Steel Res., 116, 141-155. https://doi.org/10.1016/j.jcsr.2015.09.009.
  29. Shakourzadeh, H., Guo, Y.Q. and Batoz, J.L. (1995), "A torsion bending element for thin-walled beams with open and closed cross sections", Comput. Struct., 55(6), 1045-1054. https://doi.org/10.1016/0045-7949(94)00509-2.
  30. Silvestre, N. and Camotim, D. (2006), "Vibration behaviour of axially compressed cold-formed steel members", Steel Compos. Struct., 6(3), 221-236. https://doi.org/10.12989/scs.2006.6.3.221.
  31. Smith, E.C. and Chopra, I. (1991), "Formulation and evaluation of an analytical model for composite box-beams", J. Am. Helicopt. Soc., 36(3), 23-35. https://doi.org/10.4050/JAHS.36.23.
  32. Sokolnikoff, I.S. (1946), Mathematical Theory of Elasticity, McGraw-Hill, New York, USA.
  33. Suetake, Y. and Hirashima, M. (1997), "Extended trigonometric series analysis of box girders with diaphragms", J. Eng. Mech., 123(4), 293-301. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:4(293).
  34. Szymczak, C. and Kujawa, M. (2017), "Distortional buckling of thin-walled columns of closed quadratic cross-section", Thin-Wall. Struct., 113, 111-121. https://doi.org/10.1016/j.tws.2017.01.006.
  35. Vlasov, V.Z. (1940), Thin Walled Elastic Beams. Russian original book; Stroizdat, Moscow, French translation (1962): Pieces Longues En Voiles Minces, Eyrolles, Paris, France.
  36. Vo, T.P. and Lee, J. (2009), "Free vibration of axially loaded thin-walled composite box beams", Compos. Struct., 90(2), 233-241. https://doi.org/10.1016/j.compstruct.2009.03.010.
  37. Yang, L., Shi, G., Zhao, M. and Zhou, W. (2017), "Research on interactive buckling behavior of welded steel box-section columns", Thin-Wall. Struct., 115, 34-47. https://doi.org/10.1016/j.tws.2017.01.030.