DOI QR코드

DOI QR Code

Numerical investigation on scale-dependent vibrations of porous foam plates under dynamic loads

  • Fenjan, Raad M. (Al-Mustansiriah University) ;
  • Ahmed, Ridha A. (Al-Mustansiriah University) ;
  • Faleh, Nadhim M. (Ministry of construction and housing) ;
  • Fatima, Fatima Masood (Al-Mustansiriah University)
  • Received : 2019.07.29
  • Accepted : 2020.03.17
  • Published : 2020.06.25

Abstract

Dynamic responses of porous piezoelectric and metal foam nano-size plates have been examined via a four variables plate formulation. Diverse pore dispersions named uniform, symmetric and asymmetric have been selected. The piezoelectric nano-size plate is subjected to an external electrical voltage. Nonlocal strain gradient theory (NSGT) which includes two scale factors has been utilized to provide size-dependent model of foam nanoplate. The presented plate formulation verifies the shear deformations impacts and it gives fewer number of field components compared to first-order plate model. Hamilton's principle has been utilized for deriving the governing equations. Achieved results by differential quadrature (DQ) method have been verified with those reported in previous studies. The influences of nonlocal factor, strain gradients, electrical voltage, dynamical load frequency and pore type on forced responses of metal and piezoelectric foam nano-size plates have been researched.

Keywords

Acknowledgement

The authors would like to thank Mustansiriyah university (www.uomustansiriyah.edu.iq) Baghdad-Iraq for its support in the present work.

References

  1. Addou, F.Y., Meradjah, M., Bousahla, M.A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347
  2. Ahmed, R.A., Fenjan, R.M. and Faleh, N. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  3. Atmane, H.A., et al. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x
  4. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., 6(2), 147-159. https:// doi.org/10.12989/smm.2019.6.2.147.
  5. Attia, A., et al. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/SEM.2018.65.4.453
  6. Atmane, H.A., Tounsi, A., Bernard, F .and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369.
  7. Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
  8. Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-Wall. Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025.
  9. Ebrahimi, F., Dabbagh, A. and Rastgoo, A. (2019), "Vibration analysis of porous metal foam shells rested on an elastic substrate", J. Strain Anal. Eng. Des., 54(3), 199-208. https://doi.org/10.1177/0309324719852555
  10. El-Hassar, S.M., Benyoucef, S., Heireche, H. and Tounsi, A. (2016), "Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory", Geomech. Eng., 10(3), 357-386. https://doi.org/10.12989/gae.2016.10.3.357.
  11. Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., 4(1), 51-64. http://dx.doi.org/10.12989/anr.2016.4.1.000.
  12. Elmerabet, A.H., Heireche, H., Tounsi, A. and Semmah, A. (2017), "Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model", Adv. Nano Res., 5(1), 1-12. https://doi.org/10.12989/anr.2017.5.1.001.
  13. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  14. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupled Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  15. Li, C., Guo, L., Shen, J.P., He, Y.P. and Ju, H. (2013), "Forced vibration analysis on nanoscale beams accounting for effective nonlocal size effects", Adv. Vibr. Eng., 12(6), 623-633.
  16. Li, L. and Hu, Y. (2016), "Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory", Comput. Mater. Sci., 112, 282-288. https://doi.org/10.1016/j.commatsci.2015.10.044.
  17. Liu, J., Chen, L., Xie, F., Fan, X. and Li, C. (2016), "On bending, buckling and vibration of graphene nanosheets based on the nonlocal theory", Smart Struct. Syst., 17(2), 257-274. https://doi.org/10.12989/sss.2016.17.2.257
  18. Li, C., Lai, S.K. and Yang, X. (2019), "On the nano-structural dependence of nonlocal dynamics and its relationship to the upper limit of nonlocal scale parameter", Appl. Math. Model., 69, 127-141. https://doi.org/10.1016/j.apm.2018.12.010
  19. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  20. Mahmoudi, A., et al. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1929. https://doi.org/10.1177/1099636217727577
  21. Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B.B. (2016), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Braz. Soc. Mech. Sci. Eng., 38(8), 2193-2211. https://doi.org/10.1007/s40430-015-0482-6.
  22. Medani, M., et al. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595
  23. Meksi, R., et al. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443
  24. Merazi, M., Hadji, L., Daouadji, T.H., Tounsi, A. and Adda Bedia, E.A. (2015), "A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position", Geomech. Eng,, 8(3), 305-321. https://doi.org/10.12989/gae.2015.8.3.305.
  25. Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.
  26. Sadoun, M., Houari, M.S.A., Bakora, A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory", Geomech. Eng., 16(2), 141-150. https://doi.org/10.12989/gae.2018.16.2.141.
  27. Sayyad, A.S. and Ghugal, Y.M. (2018), "An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation", Adv. Aircraft Spacecraft Sci., 5(6), 671-689. https://doi.org/10.12989/aas.2018.5.6.671.
  28. Semmah, A., et al. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/ANR.2019.7.2.089
  29. Shokravi, M. (2017), "Buckling analysis of embedded laminated plates with agglomerated CNT-reinforced composite layers using FSDT and DQM", Geomech. Eng., 12(2), 327-346. https://doi.org/10.12989/gae.2017.12.2.327.
  30. Sobhy, M. and Radwan, A.F. (2017), "A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates", Int. J. Appl. Mech., 9(01), 1750008. https://doi/abs/10.1142/S1758825117500089.
  31. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  32. Xiao, W., Li, L. and Wang, M. (2017), "Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory", Appl. Phys. A, 123(6), 388. https://doi.org/10.1007/s00339-017-1007-1.
  33. Yazid, M., et al. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/SSS.2018.21.1.015
  34. Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.
  35. Zenkour, A.M. and Abouelregal, A.E. (2015), "Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux", Steel Compos. Struct., 18(4), 909-924. https://doi.org/10.12989/scs.2015.18.4.909.
  36. Zhu, X. and Li, L. (2017), "Closed form solution for a nonlocal strain gradient rod in tension", Int. J. Eng. Sci., 119, 16-28. https://doi.org/10.1016/j.ijengsci.2017.06.019.

Cited by

  1. Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.001