DOI QR코드

DOI QR Code

Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach

  • Fenjan, Raad M. (Al-Mustansiriah University) ;
  • Ahmed, Ridha A. (Al-Mustansiriah University) ;
  • Faleh, Nadhim M. (Ministry of construction and housing) ;
  • Hani, Fatima Masood (Al-Mustansiriah University)
  • Received : 2019.12.24
  • Accepted : 2020.03.12
  • Published : 2020.06.25

Abstract

Based on differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), forced vibrations of a porous functionally graded (FG) scale-dependent beam in thermal environments have been investigated in this study. The nanobeam is assumed to be in contact with a moving point load. NSGT contains nonlocal stress field impacts together with the microstructure-dependent strains gradient impacts. The nano-size beam is constructed by functionally graded materials (FGMs) containing even and un-even pore dispersions within the material texture. The gradual material characteristics based upon pore effects have been characterized using refined power-law functions. Dynamical deflections of the nano-size beam have been calculated using DQM and Laplace transform technique. The prominence of temperature rise, nonlocal factor, strain gradient factor, travelling load speed, pore factor/distribution and elastic substrate on forced vibrational behaviors of nano-size beams have been explored.

Keywords

Acknowledgement

The authors would like to thank Mustansiriyah university (www.uomustansiriyah.edu.iq) Baghdad-Iraq, for their support in the present work.

References

  1. Abualnour, M., et al. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489
  2. Achouri, F., Benyoucef, S., Bourada, F., Bouiadjra, R.B. and Tounsi, A. (2019), "Robust quasi 3D computational model for mechanical response of FG thick sandwich plate", Struct. Eng. Mech., 70(5), 571-589. https://doi.org/10.12989/sem.2019.70.5.571.
  3. Addou, F.Y., et al. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4),347-367. https://doi.org/10.12989/cac.2019.24.4.347
  4. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  5. Aissani, K., Bouiadjra, M.B., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., 55(4), 743-763. https://doi.org/10.12989/sem.2015.55.4.743.
  6. Akgoz, B. and Civalek, O. (2015), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226(7), 2277-2294. https://doi.org/10.1007/s00707-015-1308-4.
  7. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., 6(2), 147-159. https:// doi.org/10.12989/smm.2019.6.2.147.
  8. Alimirzaei, S., et al. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485
  9. Ansari, R., Gholami, R., Shojaei, M.F., Mohammadi, V. and Sahmani, S. (2015), "Bending, buckling and free vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain gradient elasticity theory", Eur. J. Mech.-A/Solids, 49, 251-267. https://doi.org/10.1016/j.euromechsol.2014.07.014.
  10. Arefi, M. and Zenkour, A.M. (2016), "Free vibration, wave propagation and tension analyses of a sandwich micro/nano rod subjected to electric potential using strain gradient theory", Materials Research Express, 3(11), 115704. https://doi.org/10.1088/2053-1591/3/11/115704.
  11. Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369.
  12. Balubaid, M., et al. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579
  13. Barati, M.R. (2018), "Vibration analysis of porous FG nanoshells with even and uneven porosity distributions using nonlocal strain gradient elasticity", Acta Mechanica, 229(3), 1183-1196. https://doi.org/10.1007/s00707-017-2032-z.
  14. Batou, B., et al. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699
  15. Bedia, W.A., et al. (2019), "A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/jnanor.57.175
  16. Belbachir, N., et al. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 3(1), 913-924.
  17. Berghouti, H., et al. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351
  18. Berrabah, H.M., Tounsi, A., Semmah, A. and Adda, B. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351.
  19. Bouderba, B., et al. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397.
  20. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  21. Boutaleb, S., et al. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206.
  22. Chaabane, L.A., et al. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/SEM.2019.71.2.185
  23. Chikh, A., Bakora, A., Heireche, H., Houari, M.S.A., Tounsi, A. and Bedia, E.A. (2016), "Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory", Struct. Eng. Mech., 57(4), 617-639. https://doi.org/10.12989/sem.2016.57.4.617.
  24. Draiche, K., et al. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369
  25. Draoui, A., et al. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/jnanor.57.117
  26. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008.
  27. El-Hassar, S.M., Benyoucef, S., Heireche, H. and Tounsi, A. (2016), "Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory", Geomech. Eng., 10(3), 357-386. https://doi.org/10.12989/gae.2016.10.3.357.
  28. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090.
  29. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  30. Hussain, M., et al. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431
  31. Issad, M.N., Fekrar, A., Bakora, A., Bessaim, A. and Tounsi, A. (2018), "Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory", Geomech. Eng., 15(1), 711-719. https://doi.org/10.12989/gae.2018.15.1.711.
  32. Karami, B., et al. (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. with Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  33. Karami, B., et al. (2019), "On exact wave propagation analysis of triclinic material using three dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., 69(5), 487-497. https://doi.org/10.12989/SEM.2019.69.5.487
  34. Karami, B., et al. (2019), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with grapheme nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036
  35. Karami, B., et al. (2019), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 7(1), 55-66.
  36. Khiloun, M. et al. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. with Comput., https://doi.org/10.1007/s00366-019-00732-1.
  37. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
  38. Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014.
  39. Lou, J., He, L., Wu, H. and Du, J. (2016), "Pre-buckling and buckling analyses of functionally graded microshells under axial and radial loads based on the modified couple stress theory", Compos. Struct., 142, 226-237. https://doi.org/10.1016/j.compstruct.2016.01.083.
  40. Mahmoudi, A., et al. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandwich Struct. Mater., 21(6), 1906-1926. https://doi.org/10.1177/1099636217727577
  41. Martinez-Criado, G. (2016), "Application of micro-and nanobeams for materials science", Synchrotron light sources and free-electron lasers: accelerator physics, instrumentation and science applications, 1505-1539. https://doi.org/10.1007/978-3-319-14394-1_46.
  42. Medani, M., et al. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595
  43. Meksi, R., et al. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443
  44. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415.
  45. Nami, M.R. and Janghorban, M. (2014), "Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant", Compos. Struct., 111, 349-353. https://doi.org/10.1016/j.compstruct.2014.01.012.
  46. Sahla, M., et al. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663
  47. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/ANR.2019.7.2.089
  48. She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B. and Xiao, W.S. (2018), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063.
  49. Tlidji, Y., et al. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/SEM.2019.69.6.637
  50. Yahiaoui, M., Tounsi, A., Fahsi, B., Bouiadjra, R.B. and Benyoucef, S. (2018), "The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams", Struct. Eng. Mech., 68(1), 053. https://doi.org/10.12989/sem.2018.68.1.053.
  51. Zaoui, F.Z., et al. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051
  52. Zarga, D., et al. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/SCS.2019.32.3.389
  53. Zeighampour, H. and Beni, Y.T. (2014), "Cylindrical thin-shell model based on modified strain gradient theory", Int. J. Eng. Sci., 78, 27-47. https://doi.org/10.1016/j.ijengsci.2014.01.004.
  54. Zeighampour, H. and Shojaeian, M. (2017), "Buckling analysis of functionally graded sandwich cylindrical micro/nanoshells based on the couple stress theory", J. Sandw. Struct. Mater., 1099636217703912. https://doi.org/10.1177%2F1099636217703912.
  55. Zhang, B., He, Y., Liu, D., Shen, L. and Lei, J. (2015), "Free vibration analysis of four-unknown shear deformable functionally graded cylindrical microshells based on the strain gradient elasticity theory", Compos. Struct., 119, 578-597. https://doi.org/10.1016/j.compstruct.2014.09.032.

Cited by

  1. Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2020, https://doi.org/10.12989/scs.2021.38.1.001
  2. Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.001
  3. Numerical forced vibration analysis of compositionally gradient porous cylindrical microshells under moving load and thermal environment vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.893