DOI QR코드

DOI QR Code

Lasers and Robots: Recent Developments in Transoral Laser and Transoral Robotic Surgery

  • Received : 2020.10.11
  • Accepted : 2020.11.24
  • Published : 2020.12.31

Abstract

Transoral microsurgery has come a long way as a go-to surgical intervention technique for head and neck cancers. This minimally invasive procedure had gained acceptance through comparative clinical studies against radical neck surgical procedures, radiotherapy, and chemotherapy. Laser technology has vastly improved the oncological outcomes of this procedure and brought about an appreciation of transoral laser surgery (TLM) as a mainstay for re-sectioning malignant tumors along the throat. As an established procedure, TLM has undergone several upgrades regarding the different energy devices used for cutting, ablation, and hemostasis. Continued advances in automation have eventually led to surgical robotics, resulting in the emergence of transoral robotic surgery (TORS) as a viable advanced alternative for TLM. Similarly, expansions and enhancements (image-based guidance, fluorescence spectroscopy, and advanced robotic system) have also been investigated as potential upgrades for TORS. This paper reviews a selection of publications on the significant technological advancements to TLM and TORS over the past five years.

Keywords

References

  1. Lester S, Yang WY. Principles and management of head and neck cancer. Surgery (Oxford) 2015;33:620-6. https://doi.org/10.1016/j.mpsur.2015.09.007
  2. Lim GC, Holsinger FC, Li RJ. Transoral endoscopic head and neck surgery: the contemporary treatment of head and neck cancer. Hematol Oncol Clin North Am 2015;29:1075-92. https://doi.org/10.1016/j.hoc.2015.08.001
  3. Manikantan K, Khode S, Sayed SI, Roe J, Nutting CM, Rhys-Evans P, et al. Dysphagia in head and neck cancer. Cancer Treat Rev 2009;35:724-32. https://doi.org/10.1016/j.ctrv.2009.08.008
  4. Obid R, Redlich M, Tomeh C. The treatment of laryngeal cancer. Oral Maxillofac Surg Clin North Am 2019;31:1-11. https://doi.org/10.1016/j.coms.2018.09.001
  5. Slootweg PJ, Bishop JA. Oral and oropharyngeal cancer: pathology and genetics. In: Boffetta P, Hainaut P, editors. Encyclopedia of Cancer. 3rd ed. Oxford: Academic Press; 2019. p.124-30.
  6. Li RJ, Richmon JD. Transoral endoscopic surgery: new surgical techniques for oropharyngeal cancer. Otolaryngol Clin North Am 2012;45:823-44. https://doi.org/10.1016/j.otc.2012.04.006
  7. Garas G, Arora A. Robotic head and neck surgery: history, technical evolution and the future. ORL J Otorhinolaryngol Relat Spec 2018;80:117-24. https://doi.org/10.1159/000489464
  8. Poon H, Li C, Gao W, Ren H, Lim CM. Evolution of robotic systems for transoral head and neck surgery. Oral Oncol 2018;87:82-8. https://doi.org/10.1016/j.oraloncology.2018.10.020
  9. Hamilton D, Paleri V. Role of transoral robotic surgery in current head & neck practice. Surgeon 2017;15:147-54. https://doi.org/10.1016/j.surge.2016.09.004
  10. Karaman M, Gun T, Temelkuran B, Aynaci E, Kaya C, Tekin AM. Comparison of fiber delivered CO2 laser and electrocautery in transoral robot assisted tongue base surgery. Eur Arch Otorhinolaryngol 2017;274:2273-9. https://doi.org/10.1007/s00405-017-4449-3
  11. Strieth S, Ernst BP, Both I, Hirth D, Pfisterer LN, Kunzel J, et al. Randomized controlled single-blinded clinical trial of functional voice outcome after vascular targeting KTP laser microsurgery of early laryngeal cancer. Head Neck 2019;41:899-907. https://doi.org/10.1002/hed.25474
  12. Benazzo M, Canzi P, Mauramati S, Sovardi F, Occhini A, Maiorano E, et al. Transoral robot-assisted surgery in supraglottic and oropharyngeal squamous cell carcinoma: laser versus monopolar electrocautery. J Clin Med 2019;8:2166. https://doi.org/10.3390/jcm8122166
  13. Parker NP, Weidenbecher MS, Friedman AD, Walker BA, Lott DG. KTP laser treatment of early glottic cancer: a multi-institutional retrospective study. Ann Otol Rhinol Laryngol. In press 2020.
  14. Hung WC, Lo WC, Fang KM, Cheng PW, Wang CT. Longitudinal voice outcomes following serial potassium titanyl phosphate laser procedures for recurrent respiratory papillomatosis. Ann Otol Rhinol Laryngol. In press 2020.
  15. Ahmed J, Ibrahim ASG, M Freedman L, Rosow DE. Oncologic outcomes of KTP laser surgery versus radiation for T1 glottic carcinoma. Laryngoscope 2018;128:1052-6. https://doi.org/10.1002/lary.26853
  16. Liang F, Xiao Z, Chen R, Han P, Lin P, Huang Y, et al. Transoral 980-nm/1470-nm dual-wavelength fiber laser microsurgery for early-stage glottic carcinoma. Oral Oncol 2019;96:66-70. https://doi.org/10.1016/j.oraloncology.2019.07.007
  17. Arroyo HH, Neri L, Fussuma CY, Imamura R. Diode laser for laryngeal surgery: a systematic review. Int Arch Otorhinolaryngol 2016;20:172-9. https://doi.org/10.1055/s-0036-1579741
  18. Shuang Y, Li C, Zhou X, Huang Y, Zhang L. Outcomes of radiofrequency ablation (RFA) and CO2 laser for early glottic cancer. Am J Otolaryngol 2016;37:311-6. https://doi.org/10.1016/j.amjoto.2016.03.002
  19. Zhang Y, Wang B, Sun G, Zhang G, Lu L, Liang G. Carbon dioxide laser microsurgery versus low-temperature plasma radiofrequency ablation for T1a glottic cancer: a single-blind randomized clinical trial. Biomed Res Int 2018;2018:4295960. https://doi.org/10.1155/2018/4295960
  20. Liu WP, Richmon JD, Sorger JM, Azizian M, Taylor RH. Augmented reality and cone beam CT guidance for transoral robotic surgery. J Robot Surg 2015;9:223-33. https://doi.org/10.1007/s11701-015-0520-5
  21. Liu WP, Reaugamornrat S, Sorger JM, Siewerdsen JH, Taylor RH, Richmon JD. Intraoperative image-guided transoral robotic surgery: pre-clinical studies. Int J Med Robot 2015;11:256-67. https://doi.org/10.1002/rcs.1602
  22. Oak C, Ahn YC, Nam SJ, Jung MH, Hwang SS, Chae YG, et al. Multimodal imaging using optical coherence tomography and endolaryngeal ultrasonography in a new rabbit VX2 laryngeal cancer model. Lasers Surg Med 2015;47:704-10. https://doi.org/10.1002/lsm.22409
  23. Weyers BW, Marsden M, Sun T, Bec J, Bewley AF, Gandour-Edwards RF, et al. Fluorescence lifetime imaging for intraoperative cancer delineation in transoral robotic surgery. Transl Biophotonics 2019;1:e201900017.
  24. Gorpas D, Phipps J, Bec J, Ma D, Dochow S, Yankelevich D, et al. Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients. Sci Rep 2019;9:1187. https://doi.org/10.1038/s41598-018-37237-8
  25. Odenthal J, Friedl P, Takes RP. Compatibility of CO2 laser surgery and fluorescence detection in head and neck cancer cells. Head Neck 2019;41:1253-9. https://doi.org/10.1002/hed.25547
  26. Vicini C, Montevecchi F, D'Agostino G, DE Vito A, Meccariello G. A novel approach emphasising intra-operative superficial margin enhancement of head-neck tumours with narrow-band imaging in transoral robotic surgery. Acta Otorhinolaryngol Ital 2015;35:157-61.
  27. Plaat BEC, Zwakenberg MA, van Zwol JG, Wedman J, van der Laan BFAM, Halmos GB, et al. Narrow-band imaging in transoral laser surgery for early glottic cancer in relation to clinical outcome. Head Neck 2017;39:1343-8. https://doi.org/10.1002/hed.24773
  28. Piersiala K, Klimza H, Jackowska J, Majewska A, Wierzbicka M. Narrow band imaging in transoral laser microsurgery (TLM) in moderately advanced (T2, T3) glottic cancer. Otolaryngol Pol 2018;72:17-23. https://doi.org/10.5604/01.3001.0012.0486
  29. Locatello LG, Maggiore G, Bruno C, Gallo O. Transoral laryngeal videosurgery under the direct guidance of narrow band imaging: a preliminary report. Lasers Med Sci 2020;35:2065-8. https://doi.org/10.1007/s10103-020-03022-1
  30. Pratt P, Arora A. Transoral robotic surgery: image guidance and augmented reality. ORL J Otorhinolaryngol Relat Spec 2018;80:204-12. https://doi.org/10.1159/000489467
  31. Tan Wen Sheng B, Wong P, Teo Ee Hoon C. Transoral robotic excision of laryngeal papillomas with Flex® Robotic System- a novel surgical approach. Am J Otolaryngol 2018;39:355-8. https://doi.org/10.1016/j.amjoto.2018.03.011
  32. Mandapathil M, Duvvuri U, Guldner C, Teymoortash A, Lawson G, Werner JA. Transoral surgery for oropharyngeal tumors using the Medrobotics® Flex® System - a case report. Int J Surg Case Rep 2015;10:173-5. https://doi.org/10.1016/j.ijscr.2015.03.030
  33. Gu X, Li C, Xiao X, Lim CM, Ren H. A compliant transoral surgical robotic system based on a parallel flexible mechanism. Ann Biomed Eng 2019;47:1329-44. https://doi.org/10.1007/s10439-019-02241-0
  34. Mattheis S, Hasskamp P, Holtmann L, Schafer C, Geisthoff U, Dominas N, et al. Flex Robotic System in transoral robotic surgery: the first 40 patients. Head Neck 2017;39:471-5. https://doi.org/10.1002/hed.24611
  35. Eguchi K, Chan JYK, Tateya I, Shimizu A, Holsinger FC, Sugimoto T. Curved laryngopharyngoscope with flexible next-generation robotic surgical system for transoral hypopharyngeal surgery: a preclinical evaluation. Ann Otol Rhinol Laryngol 2019;128:1023-9. https://doi.org/10.1177/0003489419856391
  36. Holsinger FC, Magnuson JS, Weinstein GS, Chan JYK, Starmer HM, Tsang RKY, et al. A next-generation single-port robotic surgical system for transoral robotic surgery: results from prospective nonrandomized clinical trials. JAMA Otolaryngol Head Neck Surg 2019;145:1027-34. https://doi.org/10.1001/jamaoto.2019.2654
  37. Chan JYK, Tsang RK, Holsinger FC, Tong MCF, Ng CWK, Chiu PWY, et al. Prospective clinical trial to evaluate safety and feasibility of using a single port flexible robotic system for transoral headand neck surgery. Oral Oncology 2019;94:101-5. https://doi.org/10.1016/j.oraloncology.2019.05.018