DOI QR코드

DOI QR Code

Application of Photobiomodulation in Hearing Research: Animal Study

  • Lee, Jae-Hun (Beckman Laser Institute Korea, College of Medicine, Dankook University) ;
  • Jung, Jae Yun (Beckman Laser Institute Korea, College of Medicine, Dankook University)
  • Received : 2020.03.09
  • Accepted : 2020.04.02
  • Published : 2020.06.30

Abstract

Hearing organs have unique characteristics and have a role in processing external sensory signals. Sensory hair cells and nerve fibers in the organ of Corti can be damaged by various causes and they do not regenerate themselves. Medication used for clinical treatment for the inner ear is limited due to the anatomical structure of the inner ear. Photobiomodulation (PBM) is a therapeutic approach that uses various sources of light and the success of PBM therapy is highly reliant on the parameters of the light sources. The positive effects of PBM have been reported in various clinical fields. This paper summarizes the previously reported research on PBM for the treatment of hearing damage in animal models.

Keywords

References

  1. Clijsen R, Brunner A, Barbero M, Clarys P, Taeymans J. Effects of low-level laser therapy on pain in patients with musculoskeletal disorders: a systematic review and meta-analysis. Eur J Phys Rehabil Med 2017;53:603-10.
  2. Pires de Sousa MV, Ferraresi C, Kawakubo M, Kaippert B, Yoshimura EM, Hamblin MR. Transcranial low-level laser therapy (810 nm) temporarily inhibits peripheral nociception: photoneuromodulation of glutamate receptors, prostatic acid phophatase, and adenosine triphosphate. Neurophotonics 2016;3:015003. https://doi.org/10.1117/1.NPh.3.1.015003
  3. Turhani D, Scheriau M, Kapral D, Benesch T, Jonke E, Bantleon HP. Pain relief by single low-level laser irradiation in orthodontic patients undergoing fixed appliance therapy. Am J Orthod Dentofacial Orthop 2006;130:371-7. https://doi.org/10.1016/j.ajodo.2005.04.036
  4. Heo JC, Park JA, Kim DK, Lee JH. Photobiomodulation (660nm) therapy reduces oxidative stress and induces BDNF expression in the hippocampus. Sci Rep 2019;9:10114. https://doi.org/10.1038/s41598-019-46490-4
  5. Dos Santos TC, de Brito Sousa K, Andreo L, Martinelli A, Rodrigues MFSD, Bussadori SK, et al. Effect of photobiomodulation on C2C12 myoblasts cultivated in M1 macrophage-conditioned media. Photochem Photobiol. In press 2020.
  6. Goo H, Kim H, Ahn J, Cho KJ. Effects of low-level light therapy at 740 nm on dry eye disease in vivo. Med Laser 2019;8:50-58. https://doi.org/10.25289/ML.2019.8.2.50
  7. Mesquita-Ferrari RA, Martins MD, Silva JA Jr, da Silva TD, Piovesan RF, Pavesi VC, et al. Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process. Lasers Med Sci 2011;26:335-40. https://doi.org/10.1007/s10103-010-0850-5
  8. Lee HJ, Kim YK. Burn wound successfully treated with 830-nm light emitting diode phototherapy combined with epidermal growth factor solution. Med Laser 2019;8:94-6. https://doi.org/10.25289/ML.2019.8.2.94
  9. da Silva Oliveira VR, Cury DP, Yamashita LB, Esteca MV, Watanabe IS, Bergmann YF, et al. Photobiomodulation induces antinociception, recovers structural aspects and regulates mitochondrial homeostasis in peripheral nerve of diabetic mice. J Biophotonics 2018;11:e201800110. https://doi.org/10.1002/jbio.201800110
  10. Adams PF, Hendershot GE, Marano MA. Current estimates from the National Health Interview Survey, 1996. Vital Health Stat 10 1999;(200):1-203.
  11. Cruickshanks KJ, Wiley TL, Tweed TS, Klein BE, Klein R, Mares-Perlman JA, et al. Prevalence of hearing loss in older adults in Beaver Dam, Wisconsin. The Epidemiology of Hearing Loss Study. Am J Epidemiol 1998;148:879-86. https://doi.org/10.1093/oxfordjournals.aje.a009713
  12. Cooper JC Jr, Gates GA. Hearing in the elderly--the Framingham cohort, 1983-1985: part II. Prevalence of central auditory processing disorders. Ear Hear 1991;12:304-11. https://doi.org/10.1097/00003446-199110000-00002
  13. Moscicki EK, Elkins EF, Baum HM, McNamara PM. Hearing loss in the elderly: an epidemiologic study of the Framingham Heart Study Cohort. Ear Hear 1985;6:184-90. https://doi.org/10.1097/00003446-198507000-00003
  14. Agrawal Y, Platz EA, Niparko JK. Prevalence of hearing loss and differences by demographic characteristics among US adults: data from the National Health and Nutrition Examination Survey, 1999-2004. Arch Intern Med 2008;168:1522-30. https://doi.org/10.1001/archinte.168.14.1522
  15. Wallhagen MI, Strawbridge WJ, Cohen RD, Kaplan GA. An increasing prevalence of hearing impairment and associated risk factors over three decades of the Alameda County Study. Am J Public Health 1997;87:440-2. https://doi.org/10.2105/AJPH.87.3.440
  16. Dalton DS, Cruickshanks KJ, Klein BE, Klein R, Wiley TL, Nondahl DM. The impact of hearing loss on quality of life in older adults. Gerontologist 2003;43:661-8. https://doi.org/10.1093/geront/43.5.661
  17. Goodman SS, Bentler RA, Dittberner A, Mertes IB. The effect of low-level laser therapy on hearing. ISRN Otolaryngol 2013;2013:916370. https://doi.org/10.1155/2013/916370
  18. Zazzio M. Pain threshold improvement for chronic hyperacusis patients in a prospective clinical study. Photomed Laser Surg 2010;28:371-7. https://doi.org/10.1089/pho.2008.2347
  19. Salahaldin AH, Abdulhadi K, Najjar N, Bener A. Low-level laser therapy in patients with complaints of tinnitus: a clinical study. ISRN Otolaryngol 2012;2012:132060. https://doi.org/10.5402/2012/132060
  20. Teggi R, Bellini C, Piccioni LO, Palonta F, Bussi M. Transmeatal low-level laser therapy for chronic tinnitus with cochlear dysfunction. Audiol Neurootol 2009;14:115-20. https://doi.org/10.1159/000161235
  21. Lee JH, Kim S, Jung JY, Lee MY. Applications of photobiomodulation in hearing research: from bench to clinic. Biomed Eng Lett 2019;9:351-8. https://doi.org/10.1007/s13534-019-00114-y
  22. Tamura A, Matsunobu T, Tamura R, Kawauchi S, Sato S, Shiotani A. Photobiomodulation rescues the cochlea from noise-induced hearing loss via upregulating nuclear factor κB expression in rats. Brain Res 2016;1646:467-4. https://doi.org/10.1016/j.brainres.2016.06.031
  23. Lee MY, Hyun JH, Suh MW, Ahn JC, Chung PS, Jung JY, et al. Treatment of peripheral vestibular dysfunction using photobiomodulation. J Biomed Opt 2017;22:1-7.
  24. Lee JH, Chang SY, Moy WJ, Oh C, Kim SH, Rhee CK, et al. Simultaneous bilateral laser therapy accelerates recovery after noise-induced hearing loss in a rat model. PeerJ 2016;4:e2252. https://doi.org/10.7717/peerj.2252
  25. Lee MY, Bae SH, Chang SY, Lee JH, Kim SH, Ahn JC, et al. Photobiomodulation by laser therapy rescued auditory neuropathy induced by ouabain. Neurosci Lett 2016;633:165-73. https://doi.org/10.1016/j.neulet.2016.09.039
  26. Rhee CK, Bahk CW, Kim SH, Ahn JC, Jung JY, Chung PS, et al. Effect of low-level laser treatment on cochlea hair-cell recovery after acute acoustic trauma. J Biomed Opt 2012;17:068002. https://doi.org/10.1117/1.JBO.17.6.068002
  27. Tamura A, Matsunobu T, Mizutari K, Niwa K, Kurioka T, Kawauchi S, et al. Low-level laser therapy for prevention of noise-induced hearing loss in rats. Neurosci Lett 2015;595:81-6. https://doi.org/10.1016/j.neulet.2015.03.031
  28. Moon TH, Lee MY, Jung JY, Ahn JC, Chang SY, Chung PS, et al. Safety assessment of trans-tympanic photobiomodulation. Lasers Med Sci 2016;31:323-33. https://doi.org/10.1007/s10103-015-1851-1
  29. Rhee CK, He P, Jung JY, Ahn JC, Chung PS, Lee MY, et al. Effect of low-level laser treatment on cochlea hair-cell recovery after ototoxic hearing loss. J Biomed Opt 2013;18:128003. https://doi.org/10.1117/1.JBO.18.12.128003
  30. Lee JH, Lee MY, Chung PS, Jung JY. Photobiomodulation using low-level 808 nm diode laser rescues cochlear synaptopathy after acoustic overexposure in rat. J Biophotonics 2019;12:e201900145.
  31. Karu TI. Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 2010;62:607-10. https://doi.org/10.1002/iub.359
  32. Wu S, Zhou F, Wei Y, Chen WR, Chen Q, Xing D. Cancer phototherapy via selective photoinactivation of respiratory chain oxidase to trigger a fatal superoxide anion burst. Antioxid Redox Signal 2014;20:733-46. https://doi.org/10.1089/ars.2013.5229
  33. Poyton RO, Ball KA. Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase. Discov Med 2011;11:154-9.
  34. Nilius B, Voets T. TRP channels: a TR(I)P through a world of multifunctional cation channels. Pflugers Arch 2005;451:1-10. https://doi.org/10.1007/s00424-005-1462-y
  35. Albert ES, Bec JM, Desmadryl G, Chekroud K, Travo C, Gaboyard S, et al. TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. J Neurophysiol 2012;107:3227-34. https://doi.org/10.1152/jn.00424.2011
  36. Wang S, Geng Q, Huo L, Ma Y, Gao Y, Zhang W, et al. Transient receptor potential cation channel subfamily vanilloid 4 and 3 in the inner ear protect hearing in mice. Front Mol Neurosci 2019;12:296. https://doi.org/10.3389/fnmol.2019.00296
  37. de Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 2016;22:7000417.
  38. Chen AC, Arany PR, Huang YY, Tomkinson EM, Sharma SK, Kharkwal GB, et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 2011;6:e22453. https://doi.org/10.1371/journal.pone.0022453