DOI QR코드

DOI QR Code

Evaluation of Myocardial Ischemia Using Coronary Computed Tomography Angiography in Patients with Stable Angina

안정형 협심증 환자들에서 관상동맥 전산화단층촬영을 이용한 심근허혈의 평가

  • Sung Min Ko (Department of Radiology, Yonsei University Wonju College of Medicine, Wonju Severance Christian Hospital)
  • 고성민 (연세대학교 원주의과대학 원주세브란스기독병원 영상의학과)
  • Received : 2020.02.11
  • Accepted : 2020.03.29
  • Published : 2020.03.01

Abstract

Assessment of myocardial ischemia in patients with stable angina is important in deciding whether to treat coronary artery disease and in predicting clinical outcome. The fractional flow reserve is a standard reference for the diagnosis of myocardial ischemia, but this procedure has limitations because of its invasiveness. Coronary computed tomography angiography (CCTA) is now an established tool in the anatomic diagnosis of coronary artery disease; however, there are limits to the diagnosis of hemodynamically important stenosis that causes myocardial ischemia. In order to address this problem, studies using quantification of coronary atherosclerotic plaques, myocardial perfusion, and noninvasive calculation of fractional flow reserve based on CCTA have been actively conducted and recognized for their diagnostic value. In this review, several imaging techniques of CCTA used to assess myocardial ischemia are described.

안정형 협심증 환자에서 관상동맥질환의 치료 여부를 결정하고 임상 결과를 예측하기 위해서는 심근허혈의 평가가 중요하다. 현재 심근허혈 진단의 표준검사법으로 분획혈류예비력 검사법이 인정되나 침습적 검사라는 제한점이 있다. 또한, 관상동맥 전산화단층촬영은 형태적인 관상동맥질환 진단에 유용한 방법으로 정립되었지만, 혈역학적으로 유의한 협착에 의한 심근허혈 진단에는 한계가 있다. 최근 이러한 문제를 해결하고자 관상동맥 전산화단층촬영 영상을 기반으로 측정한 관상동맥 죽상경화판의 정량화, 심근관류, 그리고 심근 분획혈류 예비력을 이용한 연구들이 진행되어 왔고, 그 진단적 가치를 점차 인정받고 있다. 본 종설에서는 심근허혈진단과 관련된 관상동맥 전산화단층촬영 혈관조영술의 여러 영상기법들에 대해서 알아보고자 한다.

Keywords

References

  1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2095-2128 https://doi.org/10.1016/S0140-6736(12)61728-0
  2. Laslett LJ, Alagona P Jr, Clark BA 3rd, Drozda JP Jr, Saldivar F, Wilson SR, et al. The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. J Am Coll Cardiol 2012;60:S1-49 https://doi.org/10.1016/j.jacc.2012.11.002
  3. Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 2016;133:e38-360
  4. Qaseem A, Fihn SD, Dallas P, Williams S, Owens DK, Shekelle P. Management of stable ischemic heart disease: summary of a clinical practice guideline from the American College of Physicians/American College of Cardiology Foundation/American Heart Association/American Association for Thoracic Surgery/Preventive Cardiovascular Nurses Association/Society of Thoracic Surgeons. Ann Intern Med 2012;157:735-743 https://doi.org/10.7326/0003-4819-157-10-201211200-00011
  5. Tandon V, Hall D, Yam Y, Al-Shehri H, Chen L, Tandon K, et al. Rates of downstream invasive coronary angiography and revascularization: computed tomographic coronary angiography vs. Tc-99m single photon emission computed tomography. Eur Heart J 2012;33:776-782 https://doi.org/10.1093/eurheartj/ehr346
  6. Ko SM, Hwang HK, Kim SM, Cho IH. Multi-modality imaging for the assessment of myocardial perfusion with emphasis on stress perfusion CT and MR imaging. Int J Cardiovasc Imaging 2015;31 Suppl 1:1-21 https://doi.org/10.1007/s10554-015-0645-7
  7. Hanson CA, Bourque JM. Functional and anatomical imaging in patients with ischemic symptoms and known coronary artery disease. Curr Cardiol Rep 2019;21:79
  8. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 2008;52:1724-1732 https://doi.org/10.1016/j.jacc.2008.07.031
  9. Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O'Gara P, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. Circulation 2010;122:e525-e555 https://doi.org/10.1161/CIR.0b013e3181fcae66
  10. Task Force Members, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 2013;34:2949-3003 https://doi.org/10.1093/eurheartj/eht296
  11. Adamson PD, Hunter A, Williams MC, Shah ASV, McAllister DA, Pawade TA, et al. Diagnostic and prognostic benefits of computed tomography coronary angiography using the 2016 National Institute for Health and Care Excellence guidance within a randomised trial. Heart 2018;104:207-214 https://doi.org/10.1136/heartjnl-2017-311508
  12. Deyell MW, Buller CE, Miller LH, Wang TY, Dai D, Lamas GA, et al. Impact of National Clinical Guideline recommendations for revascularization of persistently occluded infarct-related arteries on clinical practice in the United States. Arch Intern Med 2011;171:1636-1643 https://doi.org/10.1001/archinternmed.2011.315
  13. Lin GA, Dudley RA, Lucas FL, Malenka DJ, Vittinghoff E, Redberg RF. Frequency of stress testing to document ischemia prior to elective percutaneous coronary intervention. JAMA 2008;300:1765-1773 https://doi.org/10.1001/jama.300.15.1765
  14. Machida H, Tanaka I, Fukui R, Shen Y, Ishikawa T, Tate E, et al. Current and novel imaging techniques in coronary CT. Radiographics 2015;35:991-1010 https://doi.org/10.1148/rg.2015140181
  15. Schmermund A, Eckert J, Schmidt M, Magedanz A, Voigtlander T. Coronary computed tomography angiography: a method coming of age. Clin Res Cardiol 2018;107:40-48 https://doi.org/10.1007/s00392-018-1320-5
  16. Koo HJ, Yang DH, Kim YH, Kang JW, Kang SJ, Kweon J, et al. CT-based myocardial ischemia evaluation: quantitative angiography, transluminal attenuation gradient, myocardial perfusion, and CT-derived fractional flow reserve. Int J Cardiovasc Imaging 2016;32 Suppl 1:1-19 https://doi.org/10.1007/s10554-015-0825-5
  17. Nesto RW, Kowalchuk GJ. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol 1987;59:23C-30C https://doi.org/10.1016/0002-9149(87)90192-5
  18. Stillman AE, Oudkerk M, Bluemke DA, De Boer MJ, Bremerich J, Garcia EV, et al. Imaging the myocardial ischemic cascade. Int J Cardiovasc Imaging 2018;34:1249-1263 https://doi.org/10.1007/s10554-018-1330-4
  19. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974;33:87-94 https://doi.org/10.1016/0002-9149(74)90743-7
  20. Rajiah P, Maroules CD. Myocardial ischemia testing with computed tomography: emerging strategies. Cardiovasc Diagn Ther 2017;7:475-488 https://doi.org/10.21037/cdt.2017.09.06
  21. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med 2010;362:886-895 https://doi.org/10.1056/NEJMoa0907272
  22. Boden WE, O'Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 2007;356:1503-1516 https://doi.org/10.1056/NEJMoa070829
  23. Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 2008;117:1283-1291 https://doi.org/10.1161/CIRCULATIONAHA.107.743963
  24. Kim YH, Ahn JM, Park DW, Song HG, Lee JY, Kim WJ, et al. Impact of ischemia-guided revascularization with myocardial perfusion imaging for patients with multivessel coronary disease. J Am Coll Cardiol 2012;60:181-190 https://doi.org/10.1016/j.jacc.2012.02.061
  25. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, Van't Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009;360:213-224 https://doi.org/10.1056/NEJMoa0807611
  26. Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol 2010;56:177-184 https://doi.org/10.1016/j.jacc.2010.04.012
  27. Shaw LJ, Weintraub WS, Maron DJ, Hartigan PM, Hachamovitch R, Min JK, et al. Baseline stress myocardial perfusion imaging results and outcomes in patients with stable ischemic heart disease randomized to optimal medical therapy with or without percutaneous coronary intervention. Am Heart J 2012;164:243-250 https://doi.org/10.1016/j.ahj.2012.05.018
  28. Nakazato R, Shalev A, Doh JH, Koo BK, Gransar H, Gomez MJ, et al. Aggregate plaque volume by coronary computed tomography angiography is superior and incremental to luminal narrowing for diagnosis of ischemic lesions of intermediate stenosis severity. J Am Coll Cardiol 2013;62:460-467 https://doi.org/10.1016/j.jacc.2013.04.062
  29. De Bruyne B, Hersbach F, Pijls NH, Bartunek J, Bech JW, Heyndrickx GR, et al. Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but "Normal" coronary angiography. Circulation 2001;104:2401-2406 https://doi.org/10.1161/hc4501.099316
  30. Meijboom WB, Van Mieghem CA, Van Pelt N, Weustink A, Pugliese F, Mollet NR, et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 2008;52:636-643 https://doi.org/10.1016/j.jacc.2008.05.024
  31. Rossi A, Papadopoulou SL, Pugliese F, Russo B, Dharampal AS, Dedic A, et al. Quantitative computed tomographic coronary angiography: does it predict functionally significant coronary stenoses? Circ Cardiovasc Imaging 2014;7:43-51 https://doi.org/10.1161/CIRCIMAGING.112.000277
  32. Park HB, Heo R, O Hartaigh B, Cho I, Gransar H, Nakazato R, et al. Atherosclerotic plaque characteristics by CT angiography identify coronary lesions that cause ischemia: a direct comparison to fractional flow reserve. JACC Cardiovasc Imaging 2015;8:1-10 https://doi.org/10.1016/j.jcmg.2014.11.002
  33. Driessen RS, Stuijfzand WJ, Raijmakers PG, Danad I, Min JK, Leipsic JA, et al. Effect of plaque burden and morphology on myocardial blood flow and fractional flow reserve. J Am Coll Cardiol 2018;71:499-509 https://doi.org/10.1016/j.jacc.2017.11.054
  34. Gaur S, Ovrehus KA, Dey D, Leipsic J, Botker HE, Jensen JM, et al. Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions. Eur Heart J 2016;37:1220-1227 https://doi.org/10.1093/eurheartj/ehv690
  35. Diaz-Zamudio M, Fuchs TA, Slomka P, Otaki Y, Arsanjani R, Gransar H, et al. Quantitative plaque features from coronary computed tomography angiography to identify regional ischemia by myocardial perfusion imaging. Eur Heart J Cardiovasc Imaging 2017;18:499-507 https://doi.org/10.1093/ehjci/jew274
  36. Lavi S, Yang EH, Prasad A, Mathew V, Barsness GW, Rihal CS, et al. The interaction between coronary endothelial dysfunction, local oxidative stress, and endogenous nitric oxide in humans. Hypertension 2008;51:127-133 https://doi.org/10.1161/HYPERTENSIONAHA.107.099986
  37. Pontone G. Anatomy and physiology in ischaemic heart disease: a second honeymoon? Eur Heart J 2016;37:1228-1231 https://doi.org/10.1093/eurheartj/ehv748
  38. Yang DH, Kim YH. CT myocardial perfusion imaging: current status and future perspectives. Int J Cardiovasc Imaging 2017;33:1009-1020
  39. Mehra VC, Valdiviezo C, Arbab-Zadeh A, Ko BS, Seneviratne SK, Cerci R, et al. A stepwise approach to the visual interpretation of CT-based myocardial perfusion. J Cardiovasc Comput Tomogr 2011;5:357-369 https://doi.org/10.1016/j.jcct.2011.10.010
  40. Danad I, Szymonifka J, Schulman-Marcus J, Min JK. Static and dynamic assessment of myocardial perfusion by computed tomography. Eur Heart J Cardiovasc Imaging 2016;17:836-844 https://doi.org/10.1093/ehjci/jew044
  41. Caruso D, Eid M, Schoepf UJ, Jin KN, Varga-Szemes A, Tesche C, et al. Dynamic CT myocardial perfusion imaging. Eur J Radiol 2016;85:1893-1899 https://doi.org/10.1016/j.ejrad.2016.07.017
  42. Yang DH, Kim YH, Roh JH, Kang JW, Han D, Jung J, et al. Stress myocardial perfusion CT in patients suspected of having coronary artery disease: visual and quantitative analysis-validation by using fractional flow reserve. Radiology 2015;276:715-723 https://doi.org/10.1148/radiol.2015141126
  43. Ruzsics B, Lee H, Zwerner PL, Gebregziabher M, Costello P, Schoepf UJ. Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur Radiol 2008;18:2414-2424 https://doi.org/10.1007/s00330-008-1022-x
  44. Chen MY, Rochitte CE, Arbab-Zadeh A, Dewey M, George RT, Miller JM, et al. Prognostic value of combined CT angiography and myocardial perfusion imaging versus invasive coronary angiography and nuclear stress perfusion imaging in the prediction of major adverse cardiovascular events: The CORE320 Multicenter Study. Radiology 2017;284:55-65 https://doi.org/10.1148/radiol.2017161565
  45. Van Rosendael AR, Dimitriu-Leen AC, De Graaf MA, Van Zwet EW, Jukema JW, Bax JJ, et al. Impact of computed tomography myocardial perfusion following computed tomography coronary angiography on downstream referral for invasive coronary angiography, revascularization and, outcome at 12 months. Eur Heart J Cardiovasc Imaging 2017;18:969-977 https://doi.org/10.1093/ehjci/jex055
  46. Sorgaard MH, Kofoed KF, Linde JJ, George RT, Rochitte CE, Feuchtner G, et al. Diagnostic accuracy of static CT perfusion for the detection of myocardial ischemia. A systematic review and meta-analysis. J Cardiovasc Comput Tomogr 2016;10:450-457 https://doi.org/10.1016/j.jcct.2016.09.003
  47. Lu M, Wang S, Sirajuddin A, Arai AE, Zhao S. Dynamic stress computed tomography myocardial perfusion for detecting myocardial ischemia: a systematic review and meta-analysis. Int J Cardiol 2018;258:325-331 https://doi.org/10.1016/j.ijcard.2018.01.095
  48. Meinel FG, Pugliese F, Schoepf UJ, Ebersberger U, Wichmann JL, Lo GG, et al. Prognostic value of stress dynamic myocardial perfusion CT in a multicenter population with known or suspected coronary artery disease. AJR Am J Roentgenol 2017;208:761-769 https://doi.org/10.2214/AJR.16.16186
  49. Song I, Yi JG, Park JH, Kim MY, Shin JK, Ko SM. Diagnostic performance of static single-scan stress perfusion cardiac computed tomography in detecting hemodynamically significant coronary artery stenosis: a comparison with combined invasive coronary angiography and cardiovascular magnetic resonance-myocardial perfusion imaging. Acta Radiol 2018;59:1184-1193 https://doi.org/10.1177/0284185117752553
  50. Pontone G, Baggiano A, Andreini D, Guaricci AI, Guglielmo M, Muscogiuri G, et al. Diagnostic accuracy of simultaneous evaluation of coronary arteries and myocardial perfusion with single stress cardiac computed tomography acquisition compared to invasive coronary angiography plus invasive fractional flow reserve. Int J Cardiol 2018;273:263-268 https://doi.org/10.1016/j.ijcard.2018.09.065
  51. Cademartiri F, Seitun S, Clemente A, La Grutta L, Toia P, Runza G, et al. Myocardial blood flow quantification for evaluation of coronary artery disease by computed tomography. Cardiovasc Diagn Ther 2017;7:129-150 https://doi.org/10.21037/cdt.2017.03.22
  52. Spiro AJ, Haramati LB, Jain VR, Godelman A, Travin MI, Levsky JM. Resting cardiac 64-MDCT does not reliably detect myocardial ischemia identified by radionuclide imaging. AJR Am J Roentgenol 2013;200:337-342 https://doi.org/10.2214/AJR.11.8171
  53. Ko SM, Park JH, Hwang HK, Song MG. Direct comparison of stress- and rest-dual-energy computed tomography for detection of myocardial perfusion defect. Int J Cardiovasc Imaging 2014;30 Suppl 1:41-53 https://doi.org/10.1007/s10554-014-0410-3
  54. Zoghbi GJ, Dorfman TA, Iskandrian AE. The effects of medications on myocardial perfusion. J Am Coll Cardiol 2008;52:401-416 https://doi.org/10.1016/j.jacc.2008.04.035
  55. Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/ SCAI/STS Guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 2012;60:e44-e164 https://doi.org/10.1016/j.jacc.2012.07.013
  56. Singh A, Mor-Avi V, Patel AR. The role of computed tomography myocardial perfusion imaging in clinical practice. J Cardiovasc Comput Tomogr 2019 [In press] doi: https://doi.org/10.1016/j.jcct.2019.05.011
  57. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 2012;367:991-1001 https://doi.org/10.1056/NEJMoa1205361
  58. Wijns W, Kolh P, Danchin N, Di Mario C, Falk V, Folliguet T, et al. Guidelines on myocardial revascularization. Eur Heart J 2010;31:2501-2555 https://doi.org/10.1093/eurheartj/ehq277
  59. Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, et al. 2011 ACCF/AHA/SCAI Guideline for percutaneous coronary intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the society for cardiovascular angiography and interventions. J Am Coll Cardiol 2011;58:e44-e122 https://doi.org/10.1016/j.jacc.2011.08.007
  60. Mathew RC, Gottbrecht M, Salerno M. Computed tomography fractional flow reserve to guide coronary angiography and intervention. Interv Cardiol Clin 2018;7:345-354 https://doi.org/10.1016/j.iccl.2018.03.008
  61. Norgaard BL, Hjort J, Gaur S, Hansson N, Botker HE, Leipsic J, et al. Clinical use of coronary CTA-derived FFR for decision making in stable CAD. JACC Cardiovasc Imaging 2017;10:541-550 https://doi.org/10.1016/j.jcmg.2015.11.025
  62. Zhuang B, Wang S, Zhao S, Lu M. Computed tomography angiography-derived fractional flow reserve (CTFFR) for the detection of myocardial ischemia with invasive fractional flow reserve as reference: systematic review and meta-analysis. Eur Radiol 2020;30:712-725 https://doi.org/10.1007/s00330-019-06470-8
  63. Tan XW, Zheng Q, Shi L, Gao F, Allen JC Jr, Coenen A, et al. Combined diagnostic performance of coronary computed tomography angiography and computed tomography derived fractional flow reserve for the evaluation of myocardial ischemia: a meta-analysis. Int J Cardiol 2017;236:100-106 https://doi.org/10.1016/j.ijcard.2017.02.053
  64. Min JK, Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, et al. Effect of image quality on diagnostic accuracy of noninvasive fractional flow reserve: results from the prospective multicenter international DISCOVERFLOW study. J Cardiovasc Comput Tomogr 2012;6:191-199 https://doi.org/10.1016/j.jcct.2012.04.010
  65. Norgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol 2014;63:1145-1155 https://doi.org/10.1016/j.jacc.2013.11.043
  66. Tesche C, De Cecco CN, Albrecht MH, Duguay TM, Bayer RR 2nd, Litwin SE, et al. Coronary CT angiography-derived fractional flow reserve. Radiology 2017;285:17-33 https://doi.org/10.1148/radiol.2017162641
  67. Schuijf JD, Ko BS, Di Carli MF, Hislop-Jambrich J, Ihdayhid AR, Seneviratne SK, et al. Fractional flow reserve and myocardial perfusion by computed tomography: a guide to clinical application. Eur Heart J Cardiovasc Imaging 2018;19:127-135 https://doi.org/10.1093/ehjci/jex240
  68. Kim KH, Doh JH, Koo BK, Min JK, Erglis A, Yang HM, et al. A novel noninvasive technology for treatment planning using virtual coronary stenting and computed tomography-derived computed fractional flow reserve. JACC Cardiovasc Interv 2014;7:72-78 https://doi.org/10.1016/j.jcin.2013.05.024
  69. Cook CM, Petraco R, Shun-Shin MJ, Ahmad Y, Nijjer S, Al-Lamee R, et al. Diagnostic accuracy of computed tomography-derived fractional flow reserve : a systematic review. JAMA Cardiol 2017;2:803-810 https://doi.org/10.1001/jamacardio.2017.1314
  70. Danad I, Szymonifka J, Twisk JWR, Norgaard BL, Zarins CK, Knaapen P, et al. Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: a meta-analysis. Eur Heart J 2017;38:991-998
  71. Coenen A, Rossi A, Lubbers MM, Kurata A, Kono AK, Chelu RG, et al. Integrating CT myocardial perfusion and CT-FFR in the work up of coronary artery disease. JACC Cardiovasc Imaging 2017;10:760-770 https://doi.org/10.1016/j.jcmg.2016.09.028
  72. Yang DH, Kim YH, Roh JH, Kang JW, Ahn JM, Kweon J, et al. Diagnostic performance of on-site CT-derived fractional flow reserve versus CT perfusion. Eur Heart J Cardiovasc Imaging 2017;18:432-440 https://doi.org/10.1093/ehjci/jew094
  73. Ko BS, Linde JJ, Ihdayhid AR, Norgaard BL, Kofoed KF, Sorgaard M, et al. Non-invasive CT-derived fractional flow reserve and static rest and stress CT myocardial perfusion imaging for detection of haemodynamically significant coronary stenosis. Int J Cardiovasc Imaging 2019;35:2103-2112 https://doi.org/10.1007/s10554-019-01658-x
  74. Li Y, Yu M, Dai X, Lu Z, Shen C, Wang Y, et al. Detection of hemodynamically significant coronary stenosis: CT myocardial perfusion versus machine learning CT fractional flow reserve. Radiology 2019;293:305-314 https://doi.org/10.1148/radiol.2019190098