DOI QR코드

DOI QR Code

Nanoscale-NMR with Nitrogen Vacancy center spins in diamond

  • Lee, Junghyun (Center for Quantum Information, Korea Institute of Science and Technology)
  • 투고 : 2020.06.18
  • 심사 : 2020.06.19
  • 발행 : 2020.06.20

초록

Nitrogen-Vacancy (NV) center in diamond has been an emerging versatile tool for quantum sensing applications. Amongst various applications, nano-scale nuclear magnetic resonance (NMR) using a single or ensemble NV centers has demonstrated promising results, opening possibility of a single molecule NMR for its chemical structural studies or multi-nuclear spin spectroscopy for quantum information science. However, there is a key challenge, which limited the spectral resolution of NMR detection using NV centers; the interrogation duration for NV-NMR detection technique has been limited by the NV sensor spin lifetime (T1 ~ 3ms), which is orders of magnitude shorter than the coherence times of nuclear spins in bulk liquid samples (T2 ~ 1s) or intrinsic 13C nuclear spins in diamond. Recent studies have shown that quantum memory technique or synchronized readout detection technique can further narrow down the spectral linewidth of NMR signal. In this short review paper, we overview basic concepts of nanoscale NMR using NV centers, and introduce further developments in high spectral resolution NV NMR studies.

키워드

참고문헌

  1. J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. L. Walsworth, and M. D. Lukin. Nat. Phys. 4, 810 (2008) https://doi.org/10.1038/nphys1075
  2. D. Le Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth. Nature 496, 486 (2013) https://doi.org/10.1038/nature12072
  3. M. S. Grinolds, S. Hong, P. Maletinsky, L. Luan, M. D. Lukin, R. L. Walsworth, and A. Yacoby. Nat. Phys. 9, 215 (2013) https://doi.org/10.1038/nphys2543
  4. F. Dolde, H. Fedder, M. W. Doherty, T. Nbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup. Nat. Phys. 7, 459 (2011) https://doi.org/10.1038/nphys1969
  5. Matthew J. Turner, Nicholas Langellier, Rachel Bainbridge, Dan Walters, Srujan Meesala, Thomas M. Babinec, Pauli Kehayias, Amir Yacoby, Evelyn Hu, Marko Loncar, Ronald L. Walsworth, Edlyn V. Levine. arXiv 03707 (2020)
  6. S. Rajendran, N. Zobrist, A. O. Sushkov, R. L. Walsworth, and M. D. Lukin. Phys. Rev. D 96, 035009 (2017) https://doi.org/10.1103/physrevd.96.035009
  7. L. Robledo, H. Bernien, T. van der Sar, and R. Hanson. New J. Phys. 13, 025013 (2011) https://doi.org/10.1088/1367-2630/13/2/025013
  8. L. Childress. PhD thesis, Harvard University (2006)
  9. H. Lee, J. Shim, J. Kor. Magn. Reson. Soc. 22, 40 (2018) https://doi.org/10.6564/JKMRS.2018.22.2.040
  10. L. P. Lee, K. Char, M. S. Colclough, and G. Zaharchuk, App. Phys. Lett. 59, 3051 (1991) https://doi.org/10.1063/1.105790
  11. P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, App. Phys. Lett. 85, 6409 (2004) https://doi.org/10.1063/1.1839274
  12. J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pahm, and R. L. Walsworth, Rev. Mod. Phys. 92, 015004 (2020) https://doi.org/10.1103/revmodphys.92.015004
  13. K. Arai, J. Lee, C. Belthangady, D. R. Glenn, H. Zhang, and R. L. Walsworth, Nat. Comm. 9, 4996 (2018) https://doi.org/10.1038/s41467-018-07489-z
  14. K. Arai, C. Belthangady, H. Zhang, N. Bar-Gill, S. J. DeVience, P. Cappellaro, A. Yacoby, R. L. Walsworth, Nat. Nanotechnol. 10, 859 (2015) https://doi.org/10.1038/nnano.2015.171
  15. S. Zaiser, T. Rendler, I. Jakabi, T. Wolf, S. Lee, S. Wagner, V. Bergholm, T. Schute-Herbruggen, P. Neumann, and J. Wrachtrup, Nat. Comm. 7, 12279 (2016) https://doi.org/10.1038/ncomms12279
  16. N. Aslam, M. Pfender, P. Neumann, R. Reuter, A. Zappe, F. Oliveira, A. Denisenko, H. Sumiya, S. Onoda, J. Isoya, and J. Wrachtrup. Science 10, 1126 (2017)
  17. D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park and R. L. Walsworth, Nature 555, 351 (2018) https://doi.org/10.1038/nature25781
  18. S. Oh, J. Kor. Magn. Reson. Soc. 23, 73 (2019)
  19. S. Meiboom and D. Gill. Rev. Sci. Instrum. 29, 688 (1958) https://doi.org/10.1063/1.1716296
  20. H. Y. Carr and E. M. Purcell. Phys. Rev. 94, 630 (1954) https://doi.org/10.1103/PhysRev.94.630
  21. J. Lee, PhD thesis, Massachusetts Institute of Technology (2018)
  22. L. M. Pham, S. J. DeVience, F. Casola, I. Lovchinsky, A. O. Sushkov, E. Bersin, J. Lee, E. Urbach, P. Cappellaro, H. Park, A. Yacoby, M. Lukin and R. L. Walsworth. Phys. Rev. B 93, 045425 (2016) https://doi.org/10.1103/physrevb.93.045425
  23. S. J. DeViencea, L. M. Pham, I. Lovchinsky, A. O. Sushkov, N. Bar-Gill, C. Belthangady, F. Casola, M. Corbett, H. Zhang, M. Lukin, H. Park, A. Yacoby, and R. L. Walsworth. Nat. Nanotechnol. 10, 129 (2015) https://doi.org/10.1038/nnano.2014.313
  24. H. J. Mamin, M. Kim, M. H. Sherwood, C. T. Rettner, K. Ohno, D. D. Awschalom, and D. Rugar. Science, 339, 557 (2013) https://doi.org/10.1126/science.1231540
  25. T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup. Science, 339, 561 (2013) https://doi.org/10.1126/science.1231675
  26. S. M. Alessio. Digital signal processing and spectral analysis for scientists: concepts and applications. Springer (2016)
  27. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg. Phys. Rep. 528, 1 (2013) https://doi.org/10.1016/j.physrep.2013.02.001
  28. P. Kehayias, A. Jarmola, N. Mosavian, I. Fescenko, F. M. Benito, A. Laraoui, J. Smits, L. Bougas, D. Budker, A. Neumann, S. R. J. Brueck, and V. M. Acosta. Nat. Comm. 8, 188 (2017) https://doi.org/10.1038/s41467-017-00266-4
  29. D. B. Bucher, D. R. Glenn, H. Park, M. D. Lukin, R. L. Walsworth. Phys. Rev. X 10, 021053 (2020)
  30. A. W. Overhauser, Polarization of Nuclei in Metals, Phys. Rev. 92, 411 (1953) https://doi.org/10.1103/PhysRev.92.411