References
- Anderson, D. and George, M. (1992), "Artificial neural networks technology", Kaman Sci. Corp., 258(6), 1-83.
- Aydogmus, H.Y., Erdal, H.I., Karakurt, O., Namli, E., Turkan, Y.S. and Erdal, H. (2015), "A comparative assessment of bagging ensemble models for modeling concrete slump flow", Comput. Concrete, 16(5), 741-757. http://dx.doi.org/10.12989/cac.2015.16.5.741.
- Breiman, L. (2001), "Random forests", Mach. Learn., 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
- Brouwers, H.J.H. and Radix, H.J. (2005), "Self-compacting concrete: theoretical and experimental study", Cement Concrete Res., 35(11), 2116-2136. https://doi.org/10.1016/j.cemconres.2005.06.002.
- Busari, A., Joseph, A. and Bamidele, D. (2018b), "Mechanical properties of dehydroxylated kaolinitic clay in self-compacting concrete for pavement construction", Silicon, 11, 2429-2437. https://doi.org/10.1007/s12633-017-9654-6.
- Busari, A.A., Joseph, O.A. and Bamidele, I.D. (2018a), "Review of sustainability in self-compacting concrete: the use of waste and mineral additives as supplementary cementitious materials and aggregates", Portugaliae Electrochimica Acta, 36(3), 147-62. http://dx.doi.org/10.4152/pea.201803147.
- Cao, Y.F., Wei, W., Han, L.Z. and Jun, M.P. (2013), "Prediction of the elastic modulus of self-compacting concrete based on svm", Appl. Mech. Mater., 357-360, 1023-1026. https://doi.org/10.4028/www.scientific.net/AMM.357-360.1023.
- Chandwani, V., Vinay, A. and Ravindra, N. (2015), "Modeling slump of ready mix concrete using genetic algorithms assisted training of artificial neural networks", Exp. Syst. Appl., 42(2), 885-893. https://doi.org/10.1016/j.eswa.2014.08.048.
- Cheng, M.Y., Chou, J.S., Roy, A.F. and Wu, Y.W. (2012), "High-performance concrete compressive strength prediction using time-weighted evolutionary fuzzy support vector machines inference model", Auto. Constr., 28, 106-115. https://doi.org/10.1016/j.autcon.2012.07.004.
- Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Mach. Learn., 20(3), 273-297. https://doi.org/10.1007/BF00994018.
- Dias, W.P.S. and Pooliyadda, S.P. (2001), "Neural networks for predicting properties of concretes with admixtures", Constr. Build. Mater., 15(7), 371-379. https://doi.org/10.1016/S0950-0618(01)00006-X.
- Domone, P. (1998), "The slump flow test for high-workability concrete", Cement Concrete Res., 28(2), 177-182. https://doi.org/10.1016/S0008-8846(97)00224-X.
- Ferrara, L., Park, Y.D. and Shah, S.P. (2007), "A method for mix-design of fiber-reinforced self-compacting concrete", Cement Concrete Res., 37(6), 957-971. https://doi.org/10.1016/j.cemconres.2007.03.014.
- Gonzalez-Taboada, I., Gonzalez-Fonteboa, B., Martinez-Abella, F. and Seara-Paz, S. (2018), "Evaluation of self-compacting recycled concrete robustness by statistical approach", Constr. Build. Mater., 176, 720-736. https://doi.org/10.1016/j.conbuildmat.2018.05.059.
- Habibi, A. and Ghomashi, J. (2018), "Development of an optimum mix design method for self-compacting concrete based on experimental results", Constr. Build. Mater., 168, 113-123. https://doi.org/10.1016/j.conbuildmat.2018.02.113.
- Haykin, S. (1994), Neural Networks: a Comprehensive Foundation, Prentice Hall PTR.
- Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neur. Network., 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- Jain, A., Jha, S.K. and Misra, S. (2008), "Modeling and analysis of concrete slump using artificial neural networks", J. Mater. Civil Eng., 20(9), 628-633. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:9(628).
- Khatib, J.M. (2008), "Performance of self-compacting concrete containing fly ash", Constr. Build. Mater., 22(9), 1963-1971. https://doi.org/10.1016/j.conbuildmat.2007.07.011.
- Lawrence, I. and Lin, K. (1989), "A concordance correlation coefficient to evaluate reproducibility", Biometrics, 255-268. https://doi.org/10.2307/2532051.
- Lee, S.C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25(7), 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X.
- Mashhadban, H., Kutanaei, S.S. and Sayarinejad, M.A. (2016), "Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network", Constr. Build. Mater., 119, 277-287. https://doi.org/10.1016/j.conbuildmat.2016.05.034.
- Massana, J., Reyes, E., Bernal, J., Leon, N. and Sanchez-Espinosa, E. (2018), "Influence of nano-and micro-silica additions on the durability of a high-performance self-compacting concrete", Constr. Build. Mater., 165, 93-103. https://doi.org/10.1016/j.conbuildmat.2017.12.100.
- Mechtcherine, V., Gram, A., Krenzer, K., Schwabe, J.H., Shyshko, S. and Roussel, N. (2014), "Simulation of fresh concrete flow using discrete element method (dem): theory and applications", Mater. Struct., 47(4), 615-630. https://doi.org/10.1617/s11527-013-0084-7.
- Okamura, H. and Ouchi, M. (2003), "Self-compacting concrete", J. Adv. Concrete Technol., 1(1), 5-15. https://doi.org/10.3151/jact.1.5.
- Okamura, H., Ozawa, K. and Ouchi, M. (2000), "Self-compacting concrete", Struct. Concrete, 1(1), 3-17. https://doi.org/10.3151/jact.1.5.
- Oztas, A., Pala, M., Ozbay, E., Kanca, E., Caglar, N. and Bhatti, M.A. (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Constr. Build. Mater., 20(9), 769-75. https://doi.org/10.1016/j.conbuildmat.2005.01.054.
- Pelisser, F., Vieira, A. and Bernardin, A.M. (2018), "Efficient self-compacting concrete with low cement consumption", J. Clean. Prod., 175, 324-332. https://doi.org/10.1016/j.jclepro.2017.12.084.
- Quinlan, J.R. (1992), "Learning with continuous classes", 5th Australian Joint Conference on Artificial Intelligence, World Scientific, 343-348.
- Rosenblatt, F. (1958), "The perceptron: a probabilistic model for information storage and organization in the brain", Psychol. Rev., 65(6), 386. https://doi.org/10.1037/h0042519.
- Roussel, N. (2006), "Correlation between yield stress and slump: comparison between numerical simulations and concrete rheometers results", Mater. Struct., 39, 501-509. ttps://doi.org/10.1617/s11527-005-9035-2.
- Saak, A.W., Jennings, H.M. and Shah, S.P. (2001), "New methodology for designing self-compacting concrete", Mater. J., 98(6), 429-439.
- Sahmaran, M., Christianto, H.A. and Yaman, I.O. (2006), "The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars", Cement Concrete Compos., 28(5), 432-440. https://doi.org/10.1016/j.cemconcomp.2005.12.003.
- Sari, M., Prat, E. and Labastire, J.F. (1999), "High strength self-compacting concrete original solutions associating organic and inorganic admixtures", Cement Concrete Res., 29(6), 813-818. https://doi.org/10.1016/S0008-8846(99)00037-X.
- Siddique, R., Aggarwal, P. and Aggarwal, Y. (2011), "Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks", Adv. Eng. Softw., 42(10), 780-786. https://doi.org/10.1016/j.advengsoft.2011.05.016.
- Sonebi, M., Cevik, A., Grunewald, S. and Walraven, J. (2016), "Modelling the fresh properties of self-compacting concrete using support vector machine approach", Constr. Build. Mater., 106, 55-64. https://doi.org/10.1016/j.conbuildmat.2015.12.035.
- Su, N., Hsu, K.C. and Chai, H.W. (2001), "A simple mix design method for self-compacting concrete", Cement Concrete Res., 31(12), 1799-1807. https://doi.org/10.1016/S0008-8846(01)00566-X.
- Tregger, N., Gregori, A., Ferrara, L. and Shah, S. (2012), "Correlating dynamic segregation of self-consolidating concrete to the slump-flow test", Constr. Build. Mater., 28(1), 499-505. https://doi.org/10.1016/j.conbuildmat.2011.08.052.
- Unlu, R. (2019), "A comparative study of machine learning and deep learning for time series forecasting: a case study of choosing the best prediction model for turkey electricity production", J. Nat. Appl. Sci., 23(2), 635-646. https://doi.org/10.19113/sdufenbed.494396.
- Uysal, M. and Kemalettin, Y. (2011), "Effect of mineral admixtures on properties of self-compacting concrete", Cement Concrete Compos., 33(7), 771-776. https://doi.org/10.1016/j.cemconcomp.2011.04.005.
- Uysal, M. and Sumer, M. (2011), "Performance of self-compacting concrete containing different mineral admixtures", Constr. Build. Mater., 25(11), 4112-4120. https://doi.org/10.1016/j.conbuildmat.2011.04.032.
- Vapnik, V., Golowich, S. and Smola, A. (1997), Advances in Neural Information Processing Systems 9, Chapter Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing.
- Yeh, I.C. (1999), "Design of high-performance concrete mixture using neural networks and nonlinear programming", J. Comput. Civil Eng., 13, 36-42. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:1(36).
- Yeh, I.C. (2007), "Modeling slump flow of concrete using second-order regressions and artificial neural networks", Cement Concrete Compos., 29(6), 474-80. https://doi.org/10.1016/j.cemconcomp.2007.02.001.