References
- Adamus-Bialek, W., Lechowicz, L., Kubiak-Szeligowska, A.B., Wawszczak, M., Kaminska, E. and Charapek, M.A. (2017), "New look at the drug-resistance investigation of uropathogenic E. Coli strains", Molec. Biol. Report., 44, 191-202. htt://doi.org/10.1007/s11033-017-4099-y.
- Aleksendrica, D. and Barton, D.C. (2009), "Neural network prediction of disc brake performance", Tribol. Int., 42(7), 1074-1080. https://doi.org/10.1016/j.triboint.2009.03.005.
- Arani, K.S., Zandi, Y., Pham, B.T., Muazu, M.A., Katebi, J., Mohammadhassani, M., Khalafi, S., Mohamad, E.T., Wakil, K. and Khorami, M. (2019), "Computational optimized finite element modeling of mechanical interaction of concrete with fiber reinforced polymer", Comput. Concrete, 23(1), 61-68. https://doi.org/10.12989/cac.2019.23.1.061.
- Ashteyat, A.M. and Ismeik, M. (2018), "Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks", Comput. Concrete, 21(1), 47-54. https://doi.org/10.12989/cac.2018.21.1.047.
- Asteris, P.G., Apostolopoulou, M., Skentou, A.D. and Moropoulou, A. (2019), "Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars", Comput. Concrete, 24(4), 329-345. https://doi.org/10.12989/cac.2019.24.4.329.
- Asteris, P.G., Armaghani, D.J., Hatzigeorgiou, G.D., Karayannis, C.G. and Pilakoutas, K. (2019), "Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks", Comput. Concrete, 24(5), 469-488. https://doi.org/10.12989/cac.2019.24.5.469.
- Behforouz, B., Memarzadeh, P., Eftekhar, M. and Fathi, F. (2019), "Regression and ANN models for durability and mechanical characteristics of waste ceramic powder high performance sustainable concrete", Comput. Concrete, 25(2), 119-132. https://doi.org/10.12989/cac.2020.25.2.119.
- Cakiroglu, E., Comez, I. and Erdol, R. (2005), "Application of artificial neural network to double receding contact problem with a rigid stamp", Struct. Eng. Mech., 21, 205-220. https://doi.org/10.12989/sem.2005.21.2.205.
- Camoes, A. and Martins, F.F. (2017), "Compressive strength prediction of CFRP confined concrete using data mining techniques", Comput. Concrete, 19(3), 233-241. https://doi.org/10.12989/cac.2017.19.3.233.
- Chandrashekhara, K., Okafor, A.C. and Jiang, Y.P. (1998), "Estimation of contact force on composite plates using impact-induced strain and neural networks", Compos. Part B-Eng., 29, 363-370. https://doi.org/10.1016/S1359-8368(98)00003-1.
- Chitgar, A.G. and Berenjian, J. (2019), "Elman ANNs along with two different sets of inputs for predicting the properties of SCCs", Comput. Concrete, 24(5), 399-412. https://doi.org/10.12989/cac.2019.24.5.399.
- Dawson, C.W. and Wilby, R. (1998), "An artificial neural network approach to rainfall-runoff modelling", Hydrolog. Sci. J., 43(1), 47-66. https://doi.org/10.1080/02626669809492102.
- Dehbozorgi, L. and Forokhi, F. (2010), "Effective feature selection for short-term earthquake prediction using Neuro-Fuzzy classifier". a, 2, 165-169. https://doi.org/10.1109/IITA-GRS.2010.5602504
- Erdem, R.T., Kantar, E., Gucuyen, E. and Anil, O. (2013), "Estimation of compression strength of polypropylene fibre reinforced concrete using artificial neural networks", Comput. Concrete, 12(5), 613-625. https://doi.org/10.12989/cac.2013.12.5.613.
- Erdogan, F., Gupta, G.D. and Cook, T.S. (1973), "Numerical solution of singular integral equations, in methods of analysis and solution of crack problems", Noordhoff, Groningen, Netherlands.
- Garzon-Roca, J., Adam, J.M., Sandoval, C. and Roca, P. (2013), "Estimation of the axial behaviour of masonry walls based on artificial neural networks", Comput. Struct., 125, 145-152. https://doi.org/10.1016/j.compstruc.2013.05.006.
- Gazder, U., Al-Amoudi, O.S.B., Khan, S.M.S. and Maslehuddin, M. (2017), "Predicting compressive strength of bended cement concrete with ANNs", Comput. Concrete, 20(6), 627-634. https://doi.org/10.12989/cac.2017.20.6.627.
- Hanna, A., Ural, D. and Saygili, G. (2007), "Evaluation of liquefaction potential of soil deposits using artificial neural networks". Eng. Comput., 24, 5-16. https://doi.org/10.1108/02644400710718547.
- Hasancebi, O. and Dumlupinar, T. (2013), "Linear and nonlinear model updating of reinforced concrete T-beam bridges using artificial neural networks", Comput. Struct., 119, 1-11. https://doi.org/10.1016/j.compstruc.2012.12.017.
- Hattori, G. and Serpa, A.L. (2015), "Contact stiffness estimation in ANSYS using simplified models and artificial neural networks", Finite Elem. Anal. Des., 97, 43-53. https://doi.org/10.1016/j.finel.2015.01.003.
- Hodhod, O.A., Said, T.E. and Ataya, A.M. (2018), "Prediction of creep in concrete using genetic programming hybridized with ANN", Comput. Concrete, 21(5), 513-523. https://doi.org/10.12989/cac.2018.21.5.513.
- Kavzoglu, T. (2001), "An investigation of the design and use of feedforward artificial neural networks in the classification of remotely sensed images", PhD Thesis, School of Geography, University of Nottingham
- Keskin, R.S.O. and Arslan, G. (2013), "Predicting diagonal cracking strength of RC slender beams without stirrups using ANNs", Comput. Concrete, 12(5), 697-715. https://doi.org/10.12989/cac.2013.12.5.697.
- Kong, L., Chen, X. and Du, Y. (2016), "Evaluation of the effect of aggregate on concrete permeability using grey correlation analysis and ANN", Comput. Concrete, 17(5), 613-628. https://doi.org/10.12989/cac.2016.17.5.613.
- Krenk, S. (1975), "On quadrate formulas for singular integral-equations of 1st and 2nd kind", Quart. Appl. Math., 33, 225-232. https://doi.org/10.1090/qam/448967
- Le Cun, Y., Denker, J.S. and Solla, S.A. (1990), "Optimal brain damage", Adv. Neur. Inform. Proc. Syst., 2, 598-605.
- Lin, H.M., Chang, S.K., Wu, J.H. and Juang, C.H. (2009), "Neural network-based model for assessing failure potential of highway slopes in the Alishan, Taiwan Area: Pre-and post-earthquake investigation", Eng. Geol., 104(3-4), 280-289. https://doi.org/10.1016/j.enggeo.2008.11.007.
- Lingam, A. and Karthikeyan, J. (2007), "Prediction of compressive strength for HPC mixes containing different blends using ANN", Comput. Concrete, 13(5), 581-592. https://doi.org/10.12989/cac.2014.13.5.581.
- Mohebbi, A., Shekarchi, M., Mahoutian, M. and Mohebbi, S. (2011), "Modeling the effects of additives on rheological properties of fresh self-consolidating cement paste using artificial neural network", Comput. Concrete, 8(3), 279-292. https://doi.org/10.12989/cac.2011.8.3.279.
- Ni, H.G. and Wang, J.Z. (2000), "Prediction of compressive strength of concrete by neural networks", Cement Concrete Res., 30, 1245-1250. https://doi.org/10.1016/S0008-8846(00)00345-8.
- Ongpeng, J., Soberano, M., Oreta, A. and Hirose, S. (2017), "Artificial neural network model using ultrasonic test results to predict compressive stress in concrete", Comput. Concrete, 19(1), 59-68. https://doi.org/10.12989/cac.2017.19.1.059.
- Ozsahin, T.S., Birinci, A. and Cakiroglu, A.O. (2004), "Prediction of contact areas between an elastic layer and two elastic circular punches with neural networks", Struct. Eng. Mech., 18, 441-459. https://doi.org/10.12989/sem.2004.18.4.441.
- Ozturk, M., Cansiz, O.F., Sevim, U.K. and Bankir, M.B. (2018), "MLR & ANN approaches for prediction of compressive strength of alkali activated EAFS", Comput. Concrete, 21(5), 559-567. https://doi.org/10.12989/cac.2018.21.5.559.
- Rapettoa, M.P., Almqvista, A., Larssona, R. and Lugt, P.M. (2009), "On the influence of surface roughness on real area of contact in normal, dry, friction free, rough contact by using a neural network", Wear, 266(5-6), 592-595. https://doi.org/10.1016/j.wear.2008.04.059.
- Saha, P., Prasad, M.L.V and Kumar, P.R. (2017), "Predicting strength of SCC using artificial neural network and multivariable regression analysis", Comput. Concrete, 20(1), 31-38. https://doi.org/10.12989/cac.2017.20.1.031.
- Sanad, A. and Saka, M.P. (2001), "Prediction of ultimate smear shear strength of reinforced-concrete deep beams using neural networks", J. Struct. Eng., ASCE, 127, 818-828. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(818).
- Serafinska, A., Graf, W. and Kaliske, M. (2018), "Artificial neural networks-based friction law for elastomeric materials applied in finite element sliding contact simulations", Complexity-Complex Algorithms for Data-Driven Model Learning in Science and Engineering, 1-15. https://doi.org/10.1155/2018/4396758.
- Shebani, A. and Iwnicki, S. (2018), "Prediction of wheel and rail wear under different contact conditions using artificial neural networks", Wear, 406-407, 173-184. https://doi.org/10.1016/j.wear.2018.01.007.
- Shirkhania, A., Davarniab, D. and Azar, B.F. (2019), "Prediction of bond strength between concrete and rebar under corrosion using ANN", Comput. Concrete, 23(4), 273-279. https://doi.org/10.12989/cac.2019.23.4.273.
- Sipos, T.K., Sigmund, V. and Hadzima-Nyarko, M. (2013), "Earthquake performance of infilled frames using neural networks and experimental database", Eng. Struct., 51, 113-127. https://doi.org/10.1016/j.engstruct.2012.12.038.
- Tang, C.W., Lin, Y. and Kuo, S.F. (2007), "Investigation on correlation between pulse velocity and compressive strength of concrete using ANNs", Comput. Concrete, 4(6), 477-497. https://doi.org/10.12989/cac.2007.4.6.477.
- Topcu, I.B., Boga, A.R. and Hocaoglu, F.O. (2009), "Modeling corrosion currents of reinforced concrete using ANN", Auto. Constr., 18, 145-152. https://doi.org/10.1016/j.autcon.2008.07.004.
- Vanluchene, R.D. and Sun, R. (1990), "Neural networks in structural engineering", Comput. Aid. Civil Infrastr. Eng., 5, 207-215. https://doi.org/10.1111/j.1467-8667.1990.tb00377.x.
- Xiaoqiang, R., Wujun, C., Gongyi, F. and Shilin, D. (2005), "Neural network model for solving elastoplastic contact problem", Chin. J. Appl. Mech., 1.
- Yan, H., Jiang, Y., Zheng, J., Peng, C. and Li, Q. (2006), "A multilayer perceptron based medical decision support system for heart disease diagnosis", Exp. Syst. Appl., 30(2), 272-281. https://doi.org/10.1016/j.eswa.2005.07.022.
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter plane", Struct. Eng. Mech., 48, 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
- Zurada, J.M. (1992), Introduction to Artificial Neural Systems, West Publishing Company, St. Paul.
Cited by
- Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2020, https://doi.org/10.12989/scs.2021.38.1.001
- Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM vol.27, pp.3, 2020, https://doi.org/10.12989/cac.2021.27.3.199
- An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2020, https://doi.org/10.12989/scs.2021.40.2.307
- Z shape joints under uniaxial compression vol.12, pp.2, 2020, https://doi.org/10.12989/acc.2021.12.2.105