DOI QR코드

DOI QR Code

Prediction of unconfined compressive strength ahead of tunnel face using measurement-while-drilling data based on hybrid genetic algorithm

  • Liu, Jiankang (Graduate School of Engineering, Nagasaki University) ;
  • Luan, Hengjie (College of Energy and Mining Engineering, Shandong University of Science and Technology) ;
  • Zhang, Yuanchao (Graduate School of Engineering, Nagasaki University) ;
  • Sakaguchi, Osamu (Department of Civil Engineering, Konoike Construction Co., Ltd.) ;
  • Jiang, Yujing (Graduate School of Engineering, Nagasaki University)
  • Received : 2020.03.19
  • Accepted : 2020.06.01
  • Published : 2020.07.10

Abstract

Measurement of the unconfined compressive strength (UCS) of the rock is critical to assess the quality of the rock mass ahead of a tunnel face. In this study, extensive field studies have been conducted along 3,885 m of the new Nagasaki tunnel in Japan. To predict UCS, a hybrid model of artificial neural network (ANN) based on genetic algorithm (GA) optimization was developed. A total of 1350 datasets, including six parameters of the Measurement-While- Drilling data and the UCS were considered as input and output parameters respectively. The multiple linear regression (MLR) and the ANN were employed to develop contrast models. The results reveal that the developed GA-ANN hybrid model can predict UCS with higher performance than the ANN and MLR models. This study is of great significance for accurately and effectively evaluating the quality of rock masses in tunnel engineering.

Keywords

Acknowledgement

Thank the Konoike Construction for providing on-site investigation guidance and data analysis support. In addition, this work was supported by the China Scholarship Council (No. 201708370104).

References

  1. Alimoradi, A., Moradzadeh, A., Naderi, R., Salehi, M.Z. and Etemadi, A. (2008), "Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks", Tunn. Undergr. Sp. Technol., 23(6), 711-717. https://doi.org/10.1016/j.tust.2008.01.001.
  2. Aoki, K., Shirasagi, S., Yamamoto, T., Inou, M. and Nishioka, K. (1999), "Examination of the application of drill Logging to predict ahead of the tunnel face", Proceedings of the 54th Annual Conference of the Japan Society of Civil Engineers, Tokyo, Japan, September.
  3. ASTM, D. (2006), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM Standard D2166: 2006.
  4. Balasubramanian, M., Paglicawan, M.A., Zhang, Z.X., Lee, S.H., Xin, Z.X. and Kim, J.K. (2008), "Prediction and optimization of mechanical properties of polypropylene/waste tire powder blends using a hybrid artificial neural network-genetic algorithm (GA-ANN)", J. Thermoplast. Compos. Mater., 21(1), 51-69. https://doi.org/10.1177/0892705707084543.
  5. Baykasoglu, A., Dereli, T. and Tanis, S. (2004), "Prediction of cement strength using soft computing techniques", Cement Concrete Res., 34(11), 2083-2090. https://doi.org/10.1016/j.cemconres.2004.03.028.
  6. Benyelloul, K. and Aourag, H. (2013), "Bulk modulus prediction of austenitic stainless steel using a hybrid GA-ANN as a data mining tools", Comput. Mater. Sci., 77, 330-334. https://doi.org/10.1016/j.commatsci.2013.04.058.
  7. Bhatti, M.S., Kapoor, D., Kalia, R.K., Reddy, A.S. and Thukral, A.K. (2011), "RSM and ANN modeling for electrocoagulation of copper from simulated wastewater: Multi objective optimization using genetic algorithm approach", Desalination, 274(1), 74-80. https://doi.org/10.1016/j.desal.2011.01.083.
  8. Bieniawski, Z.T. (1974), "Estimating the strength of rock materials", J. S. Afr. Inst. Min. Metall., 74(8), 312-320.
  9. Celada, B., Galera, J., Munoz, C. and Tardaguila, I. (2009), "The use of the specific drilling energy for rock mass characterisation and TBM driving during tunnel construction", Proceedings of the ITA-AITES World Tunnel Congress, Budapest, Hungary, May.
  10. Dehghan, S., Sattari, G., Chehreh Chelgani, S. and Aliabadi, M.A. (2010), "Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks", Min. Sci. Technol., 20(1), 41-46. https://doi.org/10.1016/S1674-5264(09)60158-7.
  11. Demirdag, S., Yavuz, H. and Altindag, R. (2009), "The effect of sample size on Schmidt rebound hardness value of rocks", Int. J. Rock Mech. Min. Sci., 46(4), 725-730. https://doi.org/10.1016/j.ijrmms.2008.09.004.
  12. Galende-Hernandez, M., Menendez, M., Fuente, M.J. and Sainz-Palmero, G.I. (2018), "Monitor-While-Drilling-based estimation of rock mass rating with computational intelligence: The case of tunnel excavation front", Autom. Construct., 93, 325-338. https://doi.org/10.1016/j.autcon.2018.05.019.
  13. Gao, D. (1998), "On structures of supervised linear basis function feedforward three-layered neural networks", Chin. J. Comput., 1.
  14. Garson, G.D. (1998), Neural Networks: An Introductory Guide for Social Scientists, Sage.
  15. Goudie, A.S. (2006), "The Schmidt Hammer in geomorphological research", Progress Phys. Geography, 30(6), 703-718. https://doi.org/10.1177/0309133306071954.
  16. Grima, M.A. and Babuska, R. (1999), "Fuzzy model for the prediction of unconfined compressive strength of rock samples", Int. J. Rock Mech. Min. Sci., 36(3), 339-349. https://doi.org/10.1016/S0148-9062(99)00007-8.
  17. Han, W., Li, G., Sun, Z., Luan, H., Liu, C. and Wu, X.J.S. (2020), "Numerical investigation of a foundation pit supported by a composite soil nailing structure", Symmetry, 12(2), 252. https://doi.org/10.3390/sym12020252.
  18. Hasanipanah, M., Noorian-Bidgoli, M., Jahed Armaghani, D. and Khamesi, H. (2016), "Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling", Eng. Comput., 32(4), 705-715. https://doi.org/10.1007/s00366-016-0447-0.
  19. Hatherly, P., Leung, R., Scheding, S. and Robinson, D. (2015), "Technical note", Int. J. Rock Mech. Min. Sci., 78(C), 144-154. https://doi.org/10.1016/j.ijrmms.2015.05.006.
  20. Hecht-Nielsen, R. (1987), "Kolmogorov's mapping neural network existence theorem", Proceedings of the International Conference on Neural Networks, New York, U.S.A.
  21. Hoien, A.H. and Nilsen, B. (2014), "Rock mass grouting in the Loren Tunnel: Case study with the main focus on the groutability and feasibility of drill parameter interpretation", Rock Mech. Rock Eng., 47(3), 967-983. https://doi.org/10.1007/s00603-013-0386-7.
  22. Holland, J.H. (1992), Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press, U.S.A.
  23. Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
  24. Hoseinie, S.H., Ataei, M. and Mikaiel, R. (2012), "Comparison of some rock hardness scales applied in drillability studies", Arab. J. Sci. Eng., 37(5), 1451-1458. https://doi.org/10.1007/s13369-012-0247-9.
  25. Inazaki, T., Isahai, H., Kawamura, S., Kurahashi, T. and Hayashi, H. (1999), "Stepwise application of horizontal seismic profiling for tunnel prediction ahead of the face", Leading Edge, 18(12), 1429-1431. https://doi.org/10.1190/1.1438246
  26. ISRM, U.R. and Hudson, J. (2007), The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006, Kozan, Ankara, Turkey.
  27. Jadav, K. and Panchal, M. (2012), "Optimizing weights of artificial neural networks using genetic algorithms", Int. J. Adv. Res. Comput. Sci. Electron. Eng., 1(10), 47-51.
  28. Jahed Armaghani, D., Hasanipanah, M., Mahdiyar, A., Abd Majid, M.Z., Bakhshandeh Amnieh, H. and Tahir, M.M.D. (2018), "Airblast prediction through a hybrid genetic algorithm-ANN model", Neural Comput. Appl., 29(9), 619-629. https://doi.org/10.1007/s00521-016-2598-8.
  29. Kahraman, S. (2001), "Evaluation of simple methods for assessing the uniaxial compressive strength of rock", Int. J. Rock Mech. Min. Sci., 38(7), 981-994. https://doi.org/10.1016/S1365-1609(01)00039-9.
  30. Kahraman, S., Rostami, J. and Naeimipour, A. (2016), "Review of ground characterization by using instrumented drills for underground mining and construction", Rock Mech. Rock Eng., 49(2), 585-602. https://doi.org/10.1007/s00603-015-0756-4.
  31. Kanellopoulos, I. and Wilkinson, G.G. (1997), "Strategies and best practice for neural network image classification", Int. J. Remote Sens., 18(4), 711-725. https://doi.org/10.1080/014311697218719.
  32. Karimi, H. and Yousefi, F. (2012), "Application of artificial neural network-genetic algorithm (ANN-GA) to correlation of density in nanofluids", Fluid Phase Equilib., 336, 79-83. https://doi.org/10.1016/j.fluid.2012.08.019.
  33. Kayabasi, A. (2012), "Prediction of pressuremeter modulus and limit pressure of clayey soils by simple and non-linear multiple regression techniques: A case study from Mersin, Turkey", Environ. Earth Sci., 66(8), 2171-2183. https://doi.org/10.1007/s12665-011-1439-4.
  34. Khademi, F., Akbari, M., Jamal, S.M. and Nikoo, M. (2017), "Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete", Front. Struct. Civ. Eng., 11(1), 90-99. https://doi.org/10.1007/s11709-016-0363-9.
  35. Khandelwal, M. and Armaghani, D.J. (2016), "Prediction of drillability of rocks with strength properties using a hybrid GAANN technique", Geotech. Geol. Eng., 34(2), 605-620. https://doi.org/10.1007/s10706-015-9970-9.
  36. Khandelwal, M., Marto, A., Fatemi, S.A., Ghoroqi, M., Armaghani, D.J., Singh, T.N. and Tabrizi, O. (2018), "Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples", Eng. Comput., 34(2), 307-317. https://doi.org/10.1007/s00366-017-0541-y.
  37. Kosakovsky Pond, S.L., Posada, D., Gravenor, M.B., Woelk, C.H. and Frost, S.D.W. (2006), "GARD: A genetic algorithm for recombination detection", Bioinformatics, 22(24), 3096-3098. https://doi.org/10.1093/bioinformatics/btl474.
  38. Kumar, M., Husian, M., Upreti, N. and Gupta, D. (2010), "Genetic algorithm: Review and application", Int. J. Inform. Technol. Knowledge Manage., 2(2), 451-454.
  39. Kwon, S. and Lee, C. (2018), "THM analysis for an in situ experiment using FLAC3D-TOUGH2 and an artificial neural network", Geomech. Eng., 16(4), 363-373. http://doi.org/10.12989/gae.2018.16.4.363.
  40. Looney, C.G. (1996), "Advances in feedforward neural networks: demystifying knowledge acquiring black boxes", IEEE T. Knowledge Data Eng., 8(2), 211-226. https://doi.org/10.1109/69.494162.
  41. Masayuki, Y., Ishiyama, K., Yumura, T. and Tsukada, J. (2001), "Application of drilling survey system for weak rock with inflow water", Proceedings of the 31st Symposium on Rock Mechanics, Tokyo, Japan, January.
  42. McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Math. Biophys., 5(4), 115-133. https://doi.org/10.1007/bf02478259.
  43. Meulenkamp, F. and Grima, M.A. (1999), "Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness", Int. J. Rock Mech. Min. Sci., 36(1), 29-39. https://doi.org/10.1016/S0148-9062(98)00173-9.
  44. Mohamad, E.T., Faradonbeh, R.S., Armaghani, D.J., Monjezi, M. and Majid, M.Z.A. (2017), "An optimized ANN model based on genetic algorithm for predicting ripping production", Neural Comput. Appl., 28(1), 393-406. https://doi.org/10.1007/s00521-016-2359-8.
  45. Mohamad, E.T., Jahed Armaghani, D., Momeni, E. and Alavi Nezhad Khalil Abad, S.V. (2015), "Prediction of the unconfined compressive strength of soft rocks: A PSO-based ANN approach", Bull. Eng. Geol. Environ., 74(3), 745-757. https://doi.org/10.1007/s10064-014-0638-0.
  46. Mokhtari, M. and Behnia, M. (2019), "Comparison of LLNF, ANN, and COA-ANN techniques in modeling the uniaxial compressive strength and static Young's modulus of limestone of the Dalan formation", Nat. Resour. Res., 28(1), 223-239. https://doi.org/10.1007/s11053-018-9383-6.
  47. Momeni, E., Nazir, R., Jahed Armaghani, D. and Maizir, H. (2014), "Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN", Measurement, 57, 122-131. https://doi.org/10.1016/j.measurement.2014.08.007.
  48. Monjezi, M., Ghafurikalajahi, M. and Bahrami, A. (2011), "Prediction of blast-induced ground vibration using artificial neural networks", Tunn. Undergr. Space Technol., 26(1), 46-50. https://doi.org/10.1016/j.tust.2010.05.002.
  49. Nathans, L.L., Oswald, F.L. and Nimon, K. (2012), "Interpreting multiple linear regression: A guidebook of variable importance", Pract. Assess. Res. Eval., 17(9).
  50. Nazir, R., Momeni, E., Armaghani, D.J. and Amin, M.M. (2013), "Prediction of unconfined compressive strength of limestone rock samples using L-type Schmidt hammer", Electron. J. Geotech. Eng., 18, 1767-1775.
  51. Nelson, M.M. and Illingworth, W.T. (1991), "A practical guide to neural nets".
  52. Ocak, I. and Seker, S.E. (2012), "Estimation of elastic modulus of intact rocks by artificial neural network", Rock Mech. Rock Eng., 45(6), 1047-1054. http://10.1007/s00603-012-0236-z.
  53. Othman, B.S., Ozcan, N.T., Kalender, A. and Sonmez, H. (2018), "Multivariate artificial neural network (ANN) models for predicting uniaxial compressive strength from index tests", Proceedings of the 2018 European Rock Mechanics Symposium, St. Petersburg, Russia, May.
  54. Peck, J.P. (1989), "Performance monitoring of rotary blasthole drills", Ph.D. Dissertation, McGill University, Montreal, Canada.
  55. Preacher, K.J., Curran, P.J. and Bauer, D. (2006), "Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis", J. Edu. Behav. Stat., 31(4), 437-448. https://doi.org/10.3102/10769986031004437
  56. Qiu, M., Ming, Z., Li, J., Gai, K. and Zong, Z. (2015), "Phasechange memory optimization for green cloud with genetic algorithm", IEEE T. Comput., 64(12), 3528-3540. https://doi.org/10.1109/TC.2015.2409857.
  57. Schunnesson, H. (1996), "RQD predictions based on drill performance parameters", Tunn. Undergr. Sp. Technol., 11(3), 345-351. https://doi.org/10.1016/0886-7798(96)00024-7.
  58. Schunnesson, H., Poulopoulos, V., Bastis, K., Pettersen, N. and Shetty, A. (2012), "Application of computerized drill jumbos at the Chenani-Nashri tunnelling site in Jammu-Kashmir, India", Proceedings of the 21st International Symposium on Mine Planning and Equipment Selection, New Delhi, India.
  59. Scoble, M.J.,Peck, J. and Hendricks, C. (1989), "Correlation beween rotary drill performance parameters and borehole geophysical logging", Min. Sci. Technol., 8(3), 301-312. https://doi.org/10.1016/S0167-9031(89)90448-9.
  60. Shakoor, A. and Bonelli, R.E. (1991), "Relationship between petrographic characteristics, engineering index properties, and mechanical properties of selected sandstones", Environ. Eng. Geosci., 28(1), 55-71. https://doi.org/10.2113/gseegeosci.xxviii.1.55.
  61. Sugawara, J., Yue, Z., Tham, L., Law, K. and Lee, C. (2003), "Weathered rock characterization using drilling parameters", Can. Geotech. J., 40(3), 661-668. https://doi.org/10.1139/t03-007.
  62. Swingler, K. (1996), Applying Neural Networks: A Practical Guide, Morgan Kaufmann.
  63. Teale, R. (1965), "The concept of specific energy in rock drilling", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 2(1), 57-73. https://doi.org/10.1016/0148-9062(65)90022-7.
  64. Toghroli, A., Darvishmoghaddam, E., Zandi, Y., Parvan, M., Safa, M., Mu'azu, M., Heydari, A., Wakil, K., Gebreel, S. and Khorami, M. (2018), "Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method", Comput. Concrete, 21(5), 525-530. https://doi.org/10.12989/cac.2018.21.5.525.
  65. Tsiambaos, G. and Sabatakakis, N. (2004), "Considerations on strength of intact sedimentary rocks", Eng. Geol., 72(3), 261-273. https://doi.org/10.1016/j.enggeo.2003.10.001.
  66. Utsuki, S. and Tsuruta, R. (2018), "Construction of a geological information management system using Ai, Cim and image processing technology", Proceedings of the 52nd U.S. Rock Mechanics/Geomechanics Symposium, Washington, U.S.A., August.
  67. Wang, X., Yuan, W., Yan, Y. and Zhang, X.J.G.E. (2020), "Scale effect of mechanical properties of jointed rock mass: A numerical study based on particle flow code", Geomech. Eng., 21(3), 259-268. https://doi.org/10.12989/gae.2020.21.3.259.
  68. Whitley, D. (1994), "A genetic algorithm tutorial", Statistics Comput., 4(2), 65-85. https://doi.org/10.1007/bf00175354.
  69. Xue, X. (2019), "Application of a support vector machine for prediction of piping and internal stability of soils", Geomech. Eng., 18(5), 493-502. http://doi.org/10.12989/gae.2019.18.5.493.
  70. Yagiz, S. (2019), "Comments on: The effects of density and porosity on the correlation between uniaxial compressive strength and P-wave velocity by Amin Jamshidi, Hasan Zamanian, Reza Zarei Sahamieh", Rock Mechanics and Rock Engineering (2018) 51, 1279-1286", Rock Mech. Rock Eng., 52(2), 635-638. https://doi.org/10.1007/s00603-018-1678-8.
  71. Yagiz, S., Sezer, E.A. and Gokceoglu, C. (2012), "Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks", Int. J. Numer. Anal. Meth. Geomech., 36(14), 1636-1650. https://doi.org/10.1002/nag.1066.
  72. Yazdanmehr, M., Anijdan, S.H.M. and Bahrami, A. (2009), "Using GA-ANN algorithm to optimize soft magnetic properties of nanocrystalline mechanically alloyed Fe-Si powders", Comput. Mater. Sci., 44(4), 1218-1221. https://doi.org/10.1016/j.commatsci.2008.08.003.
  73. Yilmaz, I. (2009a), "A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks", Bull. Eng. Geol. Environ., 68(3), 297-306. https://doi.org/10.1007/s10064-009-0185-2.
  74. Yilmaz, I. (2009b), "A new testing method for indirect determination of the unconfined compressive strength of rocks", Int. J. Rock Mech. Min. Sci., 46(8), 1349-1357. https://doi.org/10.1016/j.ijrmms.2009.04.009.
  75. Yilmaz, I. and Sendir, H. (2002), "Correlation of Schmidt hardness with unconfined compressive strength and Young's modulus in gypsum from Sivas (Turkey)", Eng. Geol., 66(3), 211-219. https://doi.org/10.1016/S0013-7952(02)00041-8.
  76. Yu, S., Guo, X., Zhu, K. and Du, J. (2010), "A neuro-fuzzy GA-BP method of seismic reservoir fuzzy rules extraction", Expert Syst. Appl., 37(3), 2037-2042. https://doi.org/10.1016/j.eswa.2009.06.074.
  77. Zhang, L. (2016), Engineering Properties of Rocks, Butterworth-Heinemann, Wellington Square, Oxford, U.K.
  78. Zorlu, K., Gokceoglu, C., Ocakoglu, F., Nefeslioglu, H.A. and Acikalin, S. (2008), "Prediction of uniaxial compressive strength of sandstones using petrography-based models", Eng. Geol., 96(3), 141-158. https://doi.org/10.1016/j.enggeo.2007.10.009.

Cited by

  1. Evaluation of geological conditions and clogging of tunneling using machine learning vol.25, pp.1, 2020, https://doi.org/10.12989/gae.2021.25.1.059