DOI QR코드

DOI QR Code

Deterministic and reliability-based design of necessary support pressures for tunnel faces

  • Li, Bin (School of Transportation, Wuhan University of Technology, Hubei Highway Engineering Research Center) ;
  • Yao, Kai (School of Qilu Transportation, Shandong University) ;
  • Li, Hong (School of Transportation, Wuhan University of Technology, Hubei Highway Engineering Research Center)
  • 투고 : 2019.10.19
  • 심사 : 2020.05.18
  • 발행 : 2020.07.10

초록

This paper provides methods for the deterministic and reliability-based design of the support pressures necessary to prevent tunnel face collapse. The deterministic method is developed by extending the use of the unique load multiplier, which is embedded within OptumG2/G3 with the intention of determining the maximum load that can be supported by a system. Both two-dimensional and three-dimensional examples are presented to illustrate the applications. The obtained solutions are validated according to those derived from the existing methods. The reliability-based method is developed by incorporating the Response Surface Method and the advanced first-order second-moment reliability method into the bisection algorithm, which continuously updates the support pressure within previously determined brackets until the difference between the computed reliability index and the user-defined value is less than a specified tolerance. Two-dimensional reliability-based support pressure is compared and validated via Monte Carlo simulations, whereas the three-dimensional solution is compared with the relationship between the support pressure and the resulting reliability index provided in the existing literature. Finally, a parametric study is carried out to investigate the influences of factors on the required support pressure.

키워드

과제정보

The study is supported by the National Natural Science Foundation of China (No.51608407), the China Scholarship Council (No. 201706955065), and the project from the Department of Transportation of Hubei Province (No. 2011-700-2-22).

참고문헌

  1. Anagnostou, G. and Perazzelli, P. (2013), "The stability of a tunnel face with a free span and a non-uniform support", Geotechnik, 36, 40-50. https://doi.org/10.1002/gete.201200014.
  2. Bin, L., Taiyue, Q., Wang, Z. and Longwei, Y. (2012), "Back analysis of grouted rock bolt pullout strength parameters from field tests", Tunn. Undergr. Sp. Technol., 28, 345-349. https://doi.org/10.1016/j.tust.2011.11.004.
  3. Bobet, A. and Einstein, H.H. (2011), "Tunnel reinforcement with rockbolts", Tunn. Undergr. Sp. Technol., 26, 100-123. https://doi.org/10.1016/j.tust.2010.06.006.
  4. Cui, L., Zheng, J.J., Zhang, R.J. and Lai, H.J. (2015), "A numerical procedure for the fictitious support pressure in the application of the convergence-confinement method for circular tunnel design", Int. J. Rock Mech. Min. Sci., 78, 336-349. https://doi.org/10.1016/j.ijrmms.2015.07.001.
  5. Davis, E.H., Gunn, M.J., Mair, R.J. and Seneviratine, H.N. (1980), "The stability of shallow tunnels and underground openings in cohesive material", Geotechnique, 30(4), 397-416. https://doi.org/10.1680/geot.1980.30.4.397.
  6. Juneja, A., Hegde, A., Lee, F.H. and Yeo, C.H. (2010), "Centrifuge modelling of tunnel face reinforcement using forepoling", Tunn. Undergr. Sp. Technol., 25, 377-381. https://doi.org/10.1016/j.tust.2010.01.013.
  7. Khezri, N., Mohamad, H. and Fatahi, B. (2016), "Stability assessment of tunnel face in a layered soil using upper bound theorem of limit analysis", Geomech. Eng., 11(4), 471-492. http://doi.org/10.12989/gae.2016.11.4.471.
  8. Kim, S.H. and Tonon, F. (2010), "Face stability and required support pressure for TBM driven tunnels with ideal face membrane - Drained case", Tunn. Undergr. Sp. Technol., 25, 526-542. https://doi.org/10.1016/j.tust.2010.03.002.
  9. Klar, A. and Klein, B. (2014), "Energy-based volume loss prediction for tunnel face advancement in clays", Geotechnique, 64, 776-786. https://doi.org/10.1680/geot.14.P.024.
  10. Klar, A., Osman, A.S. and Bolton, M. (2007), "2D and 3D upper bound solutions for tunnel excavation using 'elastic' flow fields", Int. J. Numer. Anal. Meth. Geomech., 31(12), 1367-1374. https://doi.org/10.1002/nag.597.
  11. Krabbenhoft, K., Lyamin, A. and Krabbenhoft, J. (2015), Optum Computational Engineering (OptumG2). Computer Software, https://www.optumce.com.
  12. Leca, E. and Dormieux, L. (1990), "Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material", Geotechnique, 40, 581-606. https://doi.org/10.1680/geot.1990.40.4.581.
  13. Lee, Y.J. (2016), "Determination of tunnel support pressure under the pile tip using upper and lower bounds with a superimposed approach", Geomech. Eng., 11(4), 587-605. https://doi.org/10.12989/gae.2016.11.4.587.
  14. Li, B., Hong, Y., Gao, B., Qi, T.Y., Wang, Z.Z. and Zhou, J.M. (2015), "Numerical parametric study on stability and deformation of tunnel face reinforced with face bolts", Tunn. Undergr. Sp. Technol., 47, 73-80. https://doi.org/10.1016/j.tust.2014.11.008.
  15. Li, T.Z. and Yang, X.L. (2019a), "Face stability analysis of rock tunnels under water table using Hoek-Brown failure criterion", Geomech. Eng., 18(3), 235-245. https://doi.org/10.12989/gae.2019.18.3.235.
  16. Li, T.Z. and Yang, X.L. (2019b), "Probabilistic analysis for face stability of tunnels in Hoek-Brown media", Geomech. Eng., 18(6), 595-603. https://doi.org/10.12989/gae.2019.18.6.595.
  17. Liu, H. and Low, B.K. (2018), "Reliability-based design of tunnelling problems and insights for Eurocode 7", Comput. Geotech., 97, 42-51. https://doi.org/10.1016/j.compgeo.2017.12.005.
  18. Liu, W., Zhao, Y., Shi, P., Li, J. and Gan, P. (2017), "Face stability analysis of shield-driven tunnels shallowly buried in dry sand using 1-g large-scale model tests", Acta Geotech., 13(3), 693-705. https://doi.org/10.1007/s11440-017-0607-4.
  19. Lu, Q. and Low, B.K. (2011), "Probabilistic analysis of underground rock excavations using response surface method and SORM", Comput. Geotech., 38, 1008-1021. https://doi.org/10.1016/j.compgeo.2011.07.003.
  20. Lunardi, P. (2008), Design and Construction of Tunnels: Analysis of Controlled Deformations in Rock and Soils (ADECO-RS), Springer Science & Business Media.
  21. Maleki, M.R. and Mahyar, M. (2012), "Effect of nail characteristics on slope stability based on limit equilibrium and numerical methods", Geomech. Geoeng., 7(3), 197-207. https://doi.org/10.1080/17486025.2011.631037.
  22. Mollon, G., Dias, D. and Soubra, A.H. (2009), "Probabilistic analysis and design of circular tunnels against face stability", Int. J. Geomech., 9, 237-249. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:6(237).
  23. Mollon, G., Dias, D. and Soubra, A.H. (2010), "Face stability analysis of circular tunnels driven by a pressurized shield", J. Geotech. Geoenviron. Eng., 136, 215-229. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000194.
  24. Mollon, G., Dias, D. and Soubra, A.H. (2011), "Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield", Int. J. Numer. Anal. Meth. Geomech., 35(12), 1363-1388. https://doi.org/10.1002/nag.962.
  25. Mollon, G., Dias, D. and Soubra, A.H. (2012), "Continuous velocity fields for collapse and blowout of a pressurized tunnel face in purely cohesive soil", Int. J. Numer. Anal. Meth. Geomech., 37, 2061-2083. https://doi.org/10.1002/nag.2121.
  26. Mollon, G., Dias, D. and Soubra, A.H. (2013), "Probabilistic analyses of tunneling-induced ground movements", Acta Geotech., 8(2), 181-199. https://doi.org/10.1007/s11440-012-0182-7.
  27. Mollon, G., Dias, D. and Soubra, A.H. (2013), "Range of the safe retaining pressures of a pressurized tunnel face by a probabilistic approach", J. Geotech. Geoenviron. Eng., 139, 1954-1967. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000911.
  28. Mollon, G., Phoon, K.K., Dias, D. and Soubra, A.H. (2010), "Validation of a new 2D failure mechanism for the stability analysis of a pressurized tunnel face in a spatially varying sand", J. Eng. Mech., 137, 8-21. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000196.
  29. Napa-Garcia, G.F., Beck, A.T. and Celestino, T.B. (2017), "Reliability analyses of underground openings with the point estimate method", Tunn. Undergr. Sp. Technol., 64, 154-163. https://doi.org/10.1016/j.tust.2016.12.010.
  30. Oreste, P.P. and Dias, D. (2012), "Stabilisation of the excavation face in shallow tunnels using fibreglass dowels", Rock Mech. Rock Eng., 45(4), 499-517. https://doi.org/10.1007/s00603-012-0234-1.
  31. Pan Q. and Dias D. (2016), "The effect of pore water pressure on tunnel face stability", Int. J. Numer. Anal. Meth. Geomech., 40, 2123-2136. https://doi.org/10.1002/nag.2528.
  32. Pan, Q. and Dias, D. (2017), "Probabilistic evaluation of tunnel face stability in spatially random soils using sparse polynomial chaos expansion with global sensitivity analysis", Acta Geotech. 12, 1415-1429. https://doi.org/10.1007/s11440-017-0541-5.
  33. Pan, Q. and Dias, D. (2018), "Three dimensional face stability of a tunnel in weak rock masses subjected to seepage forces", Tunn. Undergr. Sp. Technol., 71, 555-566. https://doi.org/10.1016/j.tust.2017.11.003.
  34. Panet, M., Givet, P.D.C.O., Guilloux, A., Duc, J.L.D.G.N.M., Piraud, J. and Wong, H.T.S.D.H. (2001), "The convergence- confinement method", AFTESRrecommendations des Groupes de Travait, Press ENPC.
  35. Perazzelli, P. and Anagnostou, G. (2017), "Analysis method and design charts for bolt reinforcement of the tunnel face in purely cohesive soils", J. Geotech. Geoenviron. Eng., 143, 04017046. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001702.
  36. Perazzelli, P. and Anagnostou, G. (2013), "Stress analysis of reinforced tunnel faces and comparison with the limit equilibrium method", Tunn. Undergr. Sp. Technol., 38, 87-98. https://doi.org/10.1016/j.tust.2013.05.008.
  37. Perazzelli, P., Leone, T. and Anagnostou, G. (2014), "Tunnel face stability under seepage flow conditions", Tunn. Undergr. Sp. Technol., 43, 459-469. https://doi.org/10.1016/j.tust.2014.03.001.
  38. Phoon, K.K. (2014), Reliability-Based Design in Geotechnical Engineering: Computations and Applications, CRC Press.
  39. Pinyol Nuria, M. and Alonso Eduardo, E. (2012), "Design of micropiles for tunnel face reinforcement: Undrained upper bound solution", J. Geotech. Geoenviron. Eng., 138(1), 89-99. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000562.
  40. Qin, C.B., Chian, S.C. and Yang, X.L. (2017), "3D limit analysis of progressive collapse in partly weathered Hoek-Brown rock banks", Int. J. Geomech. 17(7), 04017011. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000885.
  41. Senent, S. and Jimenez, R. (2015), "A tunnel face failure mechanism for layered ground, considering the possibility of partial collapse", Tunn. Undergr. Sp. Technol., 47, 182-192. https://doi.org/10.1016/j.tust.2014.12.014.
  42. Senent, S., Mollon, G. and Jimenez, R. (2013), "Tunnel face stability in heavily fractured rock masses that follow the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 60, 440-451. https://doi.org/10.1016/j.ijrmms.2013.01.004.
  43. Sloan, S.W. (2013), "Geotechnical stability analysis", Geotechnique, 63(7), 531-572. https://doi.org/10.1680/geot.12.RL.001.
  44. Tang, X.W., Liu, W., Albers, B. and Savidis, S. (2014), "Upper bound analysis of tunnel face stability in layered soils", Acta Geotech., 9(4), 661-671. https://doi.org/10.1007/s11440-013-0256-1.
  45. Ukritchon, B., Yingchaloenkitkhajorn, K. and Keawsawasvong, S. (2017), "Three-dimensional undrained tunnel face stability in clay with a linearly increasing shear strength with depth", Comput. Geotech., 88, 146-151. https://doi.org/10.1016/j.compgeo.2017.03.013.
  46. Xiang, Y. and Song, W. (2017), "Upper-bound limit analysis of shield tunnel stability in undrained clays using complex variable solutions for different ground-loss scenarios", Int. J. Geomech., 17(9), 04017057. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000946
  47. Yang, X., Yang, Z., Pan, Q. and Li, Y. (2014), "Kinematical analysis of highway tunnel collapse using nonlinear failure criterion", J. Central South Univ., 21(1), 381-386. https://doi.org/10.1007/s11771-014-1951-2.
  48. Yang, X.L. and Huang, F. (2011), "Collapse mechanism of shallow tunnel based on nonlinear Hoek-Brown failure criterion", Tunn. Undergr. Sp. Technol., 26(6), 686-691. https://doi.org/10.1016/j.tust.2011.05.008.
  49. Yao, K., Chen, Q., Xiao, H., Liu, Y. and Lee, F. H. (2020), "Small-strain shear modulus of cement-treated marine clay", J. Mater. Civ. Eng., 32(6), 04020114. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003153.
  50. Yao, K., Pan, Y., Jia, L., Yi, J. T., Hu, J. and Wu, C. (2019), "Strength evaluation of marine clay stabilized by cementitious binder", Mar. Georesour. Geotechnol., 1-14. https://doi.org/10.1080/1064119X.2019.1615583.
  51. Yoo, C. (2002), "Finite-element analysis of tunnel face reinforced by longitudinal pipes", Comput. Geotech., 29, 73-94. https://doi.org/10.1016/S0266-352X(01)00020-9.
  52. Yu, S. (2018), "Limit analysis of a shallow subway tunnel with staged construction", Geomech. Eng., 15, 1039-1046. https://doi.org/10.12989/gae.2018.15.5.1039.
  53. Zhang, J., Yang J., Yang F., Zhang X. and Zheng X. (2017), "Upper-bound solution for stability number of elliptical tunnel in cohesionless soils", Int. J. Geomech., 17(1), 06016011. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000689.
  54. Zouain, N., Herskovits, J., Borges, L.A. and Feijoo, R.A. (1993), "An iterative algorithm for limit analysis with nonlinear yield functions", Int. J. Solids Struct., 30(10), 1397-1417. https://doi.org/10.1016/0020-7683(93)90220-2.