References
- Alavi, A.H., Aminian, P., Gandomi, A.H. and Esmaeili, M.A. (2011), "Genetic-based modeling of uplift capacity of suction caissons", Expert Syst. Applicat., 38(10), 12608-12618. https://doi.org/10.1016/j.eswa.2011.04.049
- Ardalan, H., Eslami, A. and Nariman-Zadeh, N. (2009), "Piles shaft capacity from CPT and CPTu data by polynomial neural networks and genetic algorithms", Comput. Geotech., 36(4), 616-625. https://doi.org/10.1016/j.compgeo.2008.09.003
- Bozorgvar, M. and Zahrai, S.M. (2019), "Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution", Smart Struct. Syst., Int. J., 23(1), 1-14. https://doi.org/10.12989/sss.2019.23.1.001
- Bui, D.T., Moayedi, H., Gor, M., Jaafari, A. and Foong, L.K. (2019a), "Predicting slope stability failure through machine learning paradigms", ISPRS Int. J. Geo-Inform., 8(9), 395. https://doi.org/10.3390/ijgi8090395
- Bui, D.T., Moayedi, H., Mu'azu, M.A., Rashid, A.S.A. and Nguyen, H. (2019b), "Prediction of pullout behaviour of belled piles thorough various machine learning modelling techniques", Sensors, 19(17), 3678. https://doi.org/10.3390/s19173678
- Chae, D., Cho, W. and Na, H.Y. (2012), "Uplift capacity of belled pile in weathered sandstones", Int. J. Offshore Polar Eng., 22(4), 297-305.
- Chen, H., Zhang, Q., Luo, J., Xu, Y. and Zhang, X. (2020), "An enhanced Bacterial Foraging Optimization and its application for training kernel extreme learning machine", Appl. Soft Comput., 86, 105884. https://doi.org/10.1016/j.asoc.2019.105884
- Cheng, M.-Y., Cao, M.-T. and Tran, D.-H. (2014), "A hybrid fuzzy inference model based on RBFNN and artificial bee colony for predicting the uplift capacity of suction caissons", Automat. Constr., 41, 60-69. https://doi.org/10.1016/j.autcon.2014.02.008
- Duan, Y.F., Chen, Q.Y., Zhang, H.M., Yun, C.B., Wu, S.K. and Zhu, Q. (2019), "CNN-based damage identification method of tied-arch bridge using spatial-spectral information", Smart Struct. Syst., Int. J., 23(5), 507-520. https://doi.org/10.12989/sss.2019.23.5.507
- El-Bakry, M.Y. (2003), "Feed forward neural networks modeling for K-P interactions", Chaos Solitons Fractals, 18(5), 995-1000. https://doi.org/10.1016/S0960-0779(03)00068-7
- Ghiasi, R. and Ghasemi, M.R. (2018), "Optimization-based method for structural damage detection with consideration of uncertainties- a comparative study", Smart Struct. Syst., Int. J., 22(5), 561-574. https://doi.org/10.12989/sss.2018.22.5.561
- Guo, Z., Moayedi, H., Foong, L.K. and Bahiraei, M. (2020), "Optimal modification of heating, ventilation, and air conditioning system performances in residential buildings using the integration of metaheuristic optimization and neural computing", Energy Build., 214, 109866. https://doi.org/10.1016/j.enbuild.2020.109866
- Hagan, M.T. and Menhaj, M.B. (1994), "Training feedforward networks with the marquardt algorithm", IEEE Trans. Neural Netw., 5(6), 989-993. https://doi.org/10.1109/72.329697
- Hebb, D. (1949), The Organization of Behavior: A Neurophysiological Approach, Wiley, [JH].
- Hertz, J.A. (2018), Introduction to the Theory of Neural Computation, CRC Press.
- Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- Jain, A.K., Mao, J. and Mohiuddin, K.M. (1996), "Artificial neural networks: A tutorial", Computer, 29(3), 31-44. https://doi.org/10.1109/2.485891
- Li, A., Fang, Q., Zhang, D.L., Luo, J.W. and Hong, X.F. (2018), "Blast vibration of a large-span high-speed railway tunnel based on microseismic monitoring", Smart Struct. Syst., Int. J., 21(5), 561-569. https://doi.org/10.12989/sss.2018.21.5.561
- McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Mathe. Biophys., 5(4), 115-133. https://doi.org/10.1007/BF02478259
- Mehrabi, M., Pradhan, B., Moayedi, H. and Alamri, A. (2020), "Optimizing an Adaptive Neuro-Fuzzy Inference System for Spatial Prediction of Landslide Susceptibility Using Four State-of-the-art Metaheuristic Techniques", Sensors, 20(6), 1723. https://doi.org/10.3390/s20061723
- Mirjalili, S. (2015), "The ant lion optimizer", Adv. Eng. Software, 83, 80-98. https://doi.org/10.1016/j.advengsoft.2015.01.010
- Mirjalili, S. (2016), "Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems", Neural Comput. Applicat., 27(4), 1053-1073. https://doi.org/10.1007/s00521-015-1920-1
- Mirjalili, S. and Lewis, A. (2016), "The whale optimization algorithm", Adv. Eng. Software, 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008
- Moayedi, H., Moatamediyan, A., Nguyen, H., Bui, X.-N., Bui, D.T. and Rashid, A.S.A. (2019), "Prediction of ultimate bearing capacity through various novel evolutionary and neural network models", Eng. Comput., 35. https://doi.org/10.1007/s00366-019-00723-2
- Nazir, R., Moayedi, H., Pratikso, A. and Mosallanezhad, M. (2015), "The uplift load capacity of an enlarged base pier embedded in dry sand", Arab. J. Geosci., 8, 7285-7296. https://doi.org/10.1007/s12517-014-1721-3
- Nguyen, H., Moayedi, H., Sharifi, A., Amizah, W.J.W. and Safuan, A.R.A. (2019), "Proposing a novel predictive technique using M5Rules-PSO model estimating cooling load in energy-efficient building system", Eng. Comput., 35, 1-11. https://doi.org/10.1007/s00366-019-00735-y
- Palappan, A. and Thangavelu, J. (2018), "A New Meta Heuristic Dragonfly Optimizaion Algorithm for Optimal Reactive Power Dispatch Problem", Gazi Univ. J. Sci., 31(4), 1107-1121.
- Qiao, W. and Yang, Z. (2019), "Forecast the electricity price of U.S. using a wavelet transform-based hybrid model", Energy, 193, 116704. https://doi.org/10.1016/j.energy.2019.116704
- Rana, N. and Latiff, M.S.A. (2018), "A cloud-based conceptual framework for multi-objective virtual machine scheduling using whale optimization algorithm", Int. J. Innov. Comput., 8(3). https://doi.org/10.11113/ijic.v8n3.199
- Rao, S.G. (2000), "Artificial neural networks in hydrology. II: Hydrologic applications", J. Hydrol. Eng., 5(2), 124-137. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(124)
- Saleem, M.M. and Jo, H. (2019), "Impact force localization for civil infrastructure using augmented Kalman Filter optimization", Smart Struct. Syst., Int. J., 23(2), 123-139. https://doi.org/10.12989/sss.2019.23.2.123
- Shen, L., Chen, H., Yu, Z., Kang, W., Zhang, B., Li, H., Yang, B. and Liu, D. (2016), "Evolving support vector machines using fruit fly optimization for medical data classification", Knowledge-Based Syst., 96, 61-75. https://doi.org/10.1016/j.knosys.2016.01.002
- Shi, F., Liu, C. and Cai, L.B. (1998), Experimental Research on Bearing Capacity of Belled Piles, A a Balkema Publishers, Leiden, pp. 165-170.
- Soleimani, S., Jiao, P.C., Rajaei, S. and Forsati, R. (2018), "A new approach for prediction of collapse settlement of sandy gravel soils", Eng. Compute., 34(1), 15-24. https://doi.org/10.1007/s00366-017-0517-y
- Thomas, S., Pillai, G.N., Pal, K. and Jagtap, P. (2016), "Prediction of ground motion parameters using randomized ANFIS (RANFIS)", Appl. Soft Comput., 40, 624-634. https://doi.org/10.1016/j.asoc.2015.12.013
- Tien Bui, D., Moayedi, H., Anastasios, D. and Kok Foong, L. (2019), "Predicting heating and cooling loads in energy-efficient buildings using two hybrid intelligent models", Appl. Sci., 9(17), 3543. https://doi.org/10.3390/app9173543
- Vanishree, J. and Ramesh, V. (2018), "Optimization of size and cost of static var compensator using dragonfly algorithm for voltage profile improvement in power transmission systems", Int. J. Renew. Energy Res. (IJRER), 8(1), 56-66.
- Wang, M. and Chen, H. (2020), "Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis", Appl. Soft Comput., 88, 105946. https://doi.org/10.1016/j.asoc.2019.105946
- Wang, M., Chen, H., Yang, B., Zhao, X., Hu, L., Cai, Z., Huang, H. and Tong, C. (2017), "Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses", Neurocomputing, 267, 69-84. https://doi.org/10.1016/j.neucom.2017.04.060
- Wang, B., Moayedi, H., Nguyen, H., Foong, L.K. and Rashid, A.S.A. (2019), "Feasibility of a novel predictive technique based on artificial neural network optimized with particle swarm optimization estimating pullout bearing capacity of helical piles", Eng. Comput., 36, 1-10. https://doi.org/10.1007/s00366-019-00764-7
- Wikelski, M., Moskowitz, D., Adelman, J.S., Cochran, J., Wilcove, D.S. and May, M.L. (2006), "Simple rules guide dragonfly migration", Biol. Lett., 2(3), 325-329. https://doi.org/10.1098/rsbl.2006.0487
- Wu, Y.D., Liu, J. and Chen, R. (2015), "An analytical analysis of a single axially-loaded pile using a nonlinear softening model", Geomech. Eng., Int. J., 8(6), 769-781. https://doi.org/10.12989/gae.2015.8.6.769
- Xi, W., Li, G., Moayedi, H. and Nguyen, H. (2019), "A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian county, China", Geomat. Natural Hazards Risk, 10(1), 1750-1771. https://doi.org/10.1080/19475705.2019.1615005
- Xu, X. and Chen, H.-L. (2014), "Adaptive computational chemotaxis based on field in bacterial foraging optimization", Soft Comput., 18(4), 797-807. https://doi.org/10.1007/s00500-013-1089-4
- Xu, Y., Chen, H., Luo, J., Zhang, Q., Jiao, S. and Zhang, X. (2019), "Enhanced Moth-flame optimizer with mutation strategy for global optimization", Inform. Sci., 492, 181-203. https://doi.org/10.1016/j.ins.2019.04.022
- Yao, W.J. and Chen, S.P. (2014), "Elastic-plastic analytical solutions of deformation of uplift belled pile", Teh. Vjesn., 21(6), 1201-1211.
- Yasen, M., Al-Madi, N. and Obeid, N. (2018), "Optimizing Neural Networks using Dragonfly Algorithm for Medical Prediction", Proceedings of the 8th International Conference on Computer Science and Information Technology (CSIT), pp. 71-76.
- Yuan, C. and Moayedi, H. (2019), "Evaluation and comparison of the advanced metaheuristic and conventional machine learning methods for prediction of landslide occurrence", Eng. Comput., 36. https://doi.org/10.1007/s00366-019-00798-x
- Zhang, L.H., Wang, Y.W., Ni, Y.Q. and Lai, S.K. (2018), "Online condition assessment of high-speed trains based on Bayesian forecasting approach and time series analysis", Smart Struct. Syst., Int. J., 21(5), 705-713. https://doi.org/10.12989/sss.2018.21.5.705
- Zhao, X., Li, D., Yang, B., Ma, C., Zhu, Y. and Chen, H. (2014), "Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton", Appl. Soft Comput., 24, 585-596. https://doi.org/10.1016/j.asoc.2014.07.024
- Zhao, X., Zhang, X., Cai, Z., Tian, X., Wang, X., Huang, Y., Chen, H. and Hu, L. (2019), "Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients", Computat. Biol. Chem., 78, 481-490. https://doi.org/10.1016/j.compbiolchem.2018.11.017
- Zhou, G., Moayedi, H., Bahiraei, M. and Lyu, Z. (2020a), "Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings", J. Cleaner Product., 254. https://doi.org/10.1016/j.jclepro.2020.120082
- Zhou, G., Moayedi, H. and Foong, L.K. (2020b), "Teaching-learning-based metaheuristic scheme for modifying neural computing in appraising energy performance of building", Eng. Comput., 36. https://doi.org/10.1007/s00366-020-00981-5
Cited by
- Identification and evaluation of cracks in electrostatically actuated resonant gas sensors using Harris Hawk / Nelder Mead and perturbation methods vol.28, pp.1, 2020, https://doi.org/10.12989/sss.2021.28.1.121