과제정보
The authors would like to acknowledge the members of Special and Multifunctional Structures Laboratory, CSIR-SERC for their help during experiments. Special and sincere thanks to Mr. Rajinikant Rao and Mr. Gautham, PhD scholars, AcSIR, CSIR-SERC for their immense help rendered during continuous impedance measurements.
참고문헌
- ACI 318 (1995), Building code requirements for structural concrete and commentary, American Concrete Institute; Farmington Hills, MI, USA.
- ASTM C-09 on Concrete and Concrete Aggregates (2013), Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, ASTM International; PA, USA.
- Bhalla, S. (2004), "A mechanical impedance approach for structural identification, health monitoring and non-destructive evaluation using piezo-impedance transducers", Doctoral Dissertation; Nanyang Technological University, School of Civil & Environmental Engineering, Singapore.
- Bhalla, S., Vittal, P.A. and Veljkovic, M. (2012), "Piezo-impedance transducers for residual fatigue life assessment of bolted steel joints", Struct. Health Monitor., 11(6), 733-750. https://doi.org/10.1177%2F1475921712458708 https://doi.org/10.1177/1475921712458708
- Bhalla, N., Sharma, S., Sharma, S. and Siddique, R. (2018), "Monitoring early-age setting of silica fume concrete using wave propagation techniques", Constr. Build. Mater., 162, 802-815. https://doi.org/10.1016/j.conbuildmat.2017.12.032
- Demirboga, R., Turkmen, I. and Karakoc, M.B. (2004), "Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete", Cement Concrete Res., 34(12), 2329-2336. https://doi.org/10.1016/j.cemconres.2004.04.017
- Diogenes, H.J.F., Cossolino, L.C., Pereira, A.H.A., El Debs, M.K. and El Debs, A.L.H.C. (2011), "Determination of modulus of elasticity of concrete from the acoustic response", Revista IBRACON de Estruturas e Materiais, 4(5), 803-813. http://dx.doi.org/10.1590/S1983-41952011000500007
- Galan, A. (1967), "Estimate of concrete strength by ultrasonic pulse velocity and damping constant", J. Proceedings, 64(10), 678-684. https://doi.org/10.14359/7596
- Ghafari, E., Yuan, Y., Wu, C., Nantung, T. and Lu, N. (2018), "Evaluation the compressive strength of the cement paste blended with supplementary cementitious materials using a piezoelectric-based sensor", Constr. Build. Mater., 171, 504-510. https://doi.org/10.1016/j.conbuildmat.2018.03.165
- Gul, R., Demirboga, R. and Guvercin, T. (2006), "Compressive strength and ultrasound pulse velocity of mineral admixtured mortars", Ind. J. Eng. Mater. Sci., 13, 18-24. http://nopr.niscair.res.in/handle/123456789/7210
- Hassett, D.J. and Eylands, K.E. (1997), "Heat of hydration of fly ash as a predictive tool", Fuel, 76(8), 807-809. https://doi.org/10.1016/S0016-2361(97)00058-6
- Hemalatha, T. and Sasmal, S. (2018), "Early-age strength development in fly ash blended cement composites: investigation through chemical activation", Magaz. Concrete Res., 71(5), 260-270. https://doi.org/10.1680/jmacr.17.00336
- Huynh, T.C. and Kim, J.T. (2017), "Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique", Smart Struct. Syst., Int. J., 20(2), 181-195. https://doi.org/10.12989/sss.2017.20.2.181
- Huynh, T.C., Dang, N.L. and Kim, J.T. (2018), "PCA-based filtering of temperature effect on impedance monitoring in prestressed tendon anchorage", Smart Struct. Syst., Int. J., 22, 57-70. https://doi.org/10.12989/sss.2018.22.1.057
- IS 4031 (1968), Methods of Physical Tests for Hydraulic Cement, Part I, Bureau of Indian Standards, New Delhi, India.
- Ji, Q., Ho, M., Zheng, R., Ding, Z. and Song, G. (2015), "An exploratory study of stress wave communication in concrete structures", Smart Struct. Syst., Int. J., 15(1), 135-150. https://doi.org/10.12989/sss.2015.15.1.135
- Kang, M.S., An, Y.K. and Kim, D.J. (2018), "Electrical impedance-based crack detection of SFRC under varying environmental conditions", Smart Struct. Syst., Int. J., 22(1), 1-11. https://doi.org/10.12989/sss.2018.22.1.001
- Kim, J., Kim, J.W. and Park, S. (2014), "Early-Age Concrete Strength Estimation Technique using Embedded Piezoelectric self-sensing impedance", Proceedings of EWSHM-7th European Workshop on Structural Health Monitoring, Inria, July.
- Kondraivendhan, B. and Bhattacharjee, B. (2015), "Flow behavior and strength for fly ash blended cement paste and mortar", Int. J. Sustain. Built Environ., 4(2), 270-277. https://doi.org/10.1016/j.ijsbe.2015.09.001
- Lam, L., Wong, Y.L. and Poon, C.S. (2000), "Degree of hydration and gel/space ratio of high-volume fly ash/cement systems", Cement Concrete Res., 30(5), 747-756. https://doi.org/10.1016/S0008-8846(00)00213-1
- Lee, H.K., Lee, K.M., Kim, Y.H., Yim, H. and Bae, D.B. (2004), "Ultrasonic in-situ monitoring of setting process of high-performance concrete", Cement Concrete Res., 34(4), 631-640. https://doi.org/10.1016/j.cemconres.2003.10.012
- Liang, C., Sun, F.P. and Rogers, C.A. (1997), "Coupled electro-mechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer", J. Intel. Mater. Syst. Struct., 8(4), 335-343. https://doi.org/10.1177/1045389X9400500102
- Lim, Y.Y., Kwong, K.Z., Liew, W.Y.H. and Soh, C.K. (2016), "Non-destructive concrete strength evaluation using smart piezoelectric transducer-A comparative study", Smart Mater. Struct., 25(8), 085021. https://doi.org/10.1088/0964-1726/25/8/085021
- Lin, Y., Lai, C.P. and Yen, T. (2003), "Prediction of ultrasonic pulse velocity (UPV) in concrete", Mater. J., 100(1), 21-28. https://doi.org/10.14359/12459
- Lu, Y., Ma, H. and Li, Z. (2015), "Ultrasonic monitoring of the early-age hydration of mineral admixtures incorporated concrete using cement-based piezoelectric composite sensors", J. Intel. Mater. Syst. Struct., 26(3), 280-291. https://doi.org/10.1177/1045389X14525488
- Marsh, B.K. and Day, R.L. (1988), "Pozzolanic and cementitious reactions of fly ash in blended cement pastes", Cement Concrete Res., 18(2), 301-310. https://doi.org/10.1016/0008-8846(88)90014-2
- Mohammed, B.S. and Adamu, M. (2018), "Non-destructive evaluation of nano silica-modified roller-compacted rubbercrete using combined SonReb and response surface methodology", Road Mater. Pavement Des., 1-21. https://doi.org/10.1080/14680629.2017.1417891
- Mohanraj, K., Sivakumar, G. and Barathan, S. (2010), "Hydration process of fly ash blended cement composite", Int. J. Chem. Sci., 8(1), 589-601.
- Namagga, C. and Atadero, R.A. (2009), "Optimization of fly ash in concrete: High lime fly ash as a replacement for cement and filler material", Proceedings of World of Coal Ash Conference (WOCA), Lexington, KY, USA, May.
- Neville, A.M. (1995), Properties of Concrete, Longman, London, UK.
- Popovics, J.S., Zemajtis, J. and Shkolnik, I. (2008), "A study of static and dynamic modulus of elasticity of concrete", ACI-CRC Final Report, American Concrete Institute; Farmington Hills, MI, USA.
- Prem, P.R., Thirumalaiselvi, A. and Verma, M. (2019), "Applied linear and nonlinear statistical models for evaluating strength of Geopolymer concrete", Comput. Concrete, Int. J., 24(1), 7-17. https://doi.org/10.12989/cac.2019.24.1.007
- Qin, L. and Li, Z. (2008), "Monitoring of cement hydration using embedded piezoelectric transducers", Smart Mater. Struct., 17(5), 055005. https://doi.org/10.1088/0964-1726/17/5/055005
- Qixian, L. and Bungey, J.H. (1996), "Using compression wave ultrasonic transducers to measure the velocity of surface waves and hence determine dynamic modulus of elasticity for concrete", Constr. Build. Mater., 10(4), 237-242. https://doi.org/10.1016/0950-0618(96)00003-7
- Quinn, W., Kelly, G. and Barrett, J. (2012), "Development of an embedded wireless sensing system for the monitoring of concrete", Struct. Health Monitor., 11(4), 381-392. https://doi.org/10.1177%2F1475921711430438 https://doi.org/10.1177/1475921711430438
- Rajabi, M., Shamshirsaz, M. and Naraghi, M. (2017), "Crack detection in rectangular plate by electromechanical impedance method: modeling and experiment", Smart Struct. Syst., Int. J., 19(4), 361-369. https://doi.org/10.12989/sss.2017.19.4.361
- Sahmaran, M., Yaman, O. and Tokyay, M. (2007), "Development of high-volume low-lime and high-lime fly-ash-incorporated self-consolidating concrete", Magaz. Concrete Res., 59(2), 97-106. https://doi.org/10.1680/macr.2007.59.2.97
- Sakai, E., Miyahara, S., Ohsawa, S., Lee, S.H. and Daimon, M. (2005), "Hydration of fly ash cement", Cement Concrete Res., 35(6), 1135-1140. https://doi.org/10.1016/j.cemconres.2004.09.008
- Salman, A.P.D.M.M. and Al-Amawee, E.A.H. (2018), "The ratio between static and dynamic modulus of elasticity in normal and high strength concrete", J. Eng. Sustain. Develop., 10(2), 163-174.
- Saravanan, T.J., Balamonica, K., Priya, C.B., Reddy, A.L. and Gopalakrishnan, N. (2015), "Comparative performance of various smart aggregates during strength gain and damage states of concrete", Smart Mater. Struct., 24(8), 085016. https://doi.org/10.1088/0964-1726/24/8/085016
- Saravanan, T.J., Balamonica, K., Bharathi Priya, C., Gopalakrishnan, N. and Murthy, S.G.N. (2017), "Piezoelectric EMI-based monitoring of early strength gain in concrete and damage detection in structural components", J. Infrastruct. Syst., 23(4), 04017029. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000386
- Sata, V., Jaturapitakkul, C. and Kiattikomol, K. (2007), "Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete", Constr. Build. Mater., 21(7), 1589-1598. https://doi.org/10.1016/j.conbuildmat.2005.09.011
- Shafiq, N. (2011), "Degree of hydration and compressive strength of conditioned samples made of normal and blended cement system", KSCE J. Civil Eng., 15(7), 1253. https://doi.org/10.1007/s12205-011-1193-x
- Shin, S.W., Qureshi, A.R., Lee, J.Y. and Yun, C.B. (2008), "Piezoelectric sensor based nondestructive active monitoring of strength gain in concrete", Smart Mater. Struct., 17(5), 055002. https://doi.org/10.1088/0964-1726/17/5/055002
- Sofi, M., Lumantarna, E., Zhou, Z., San Nicolas, R. and Mendis, P. (2017), "From Hydration to Strength Properties of Fly Ash Based Mortar", J. Mater. Sci. Chem. Eng., 5(12), 63. https://doi.org/10.4236/msce.2017.512006
- Soh, C.K. and Bhalla, S. (2005), "Calibration of piezo-impedance transducers for strength prediction and damage assessment of concrete", Smart Mater. Struct., 14(4), 671. https://doi.org/10.1088/0964-1726/14/4/026
- Talakokula, V., Bhalla, S. and Gupta, A. (2018), "Monitoring early hydration of reinforced concrete structures using structural parameters identified by piezo sensors via electromechanical impedance technique", Mech. Syst. Signal Process., 99, 129-141. https://doi.org/10.1016/j.ymssp.2017.05.042
- Tanesi, J. and Ardani, A. (2013), "Isothermal Calorimetry as a Tool to Evaluate Early-Age Performance of Fly Ash Mixtures", Transportation Research Record, 2342(1), 42-53. https://doi.org/10.3141/2342-06
- Tawie, R. and Lee, H.K. (2010), "Monitoring the strength development in concrete by EMI sensing technique", Constr. Build. Mater., 24(9), 1746-1753. https://doi.org/10.1016/j.conbuildmat.2010.02.014
- Tharmaratnam, K. and Tan, B.S. (1990), "Attenuation of ultrasonic pulse in cement mortar", Cement Concrete Res., 20(3), 335-345. https://doi.org/10.1016/0008-8846(90)90022-P
- Thomas, M.D.A. (2007), "Optimizing the use of fly ash in concrete (Vol. 5420)", Skokie, IL: Portland Cement Association.
- Trtnik, G., Kavcic, F. and Turk, G. (2009), "Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks", Ultrasonics, 49(1), 53-60. https://doi.org/10.1016/j.ultras.2008.05.001
- Verma, M., Thirumalaiselvi, A. and Rajasankar, J. (2017), "Kernel-based models for prediction of cement compressive strength", Neural Comput. Applicat., 28(1), 1083-1100. https://doi.org/10.1007/s00521-016-2419-0
- Wang, D. and Zhu, H. (2011), "Monitoring of the strength gain of concrete using embedded PZT impedance transducer", Constr. Build. Mater., 25(9), 3703-3708. https://doi.org/10.1016/j.conbuildmat.2011.04.020
- Wang, D., Song, H. and Zhu, H. (2014), "Embedded 3D electromechanical impedance model for strength monitoring of concrete using a PZT transducer", Smart Mater. Struct., 23(11), 115019. https://doi.org/10.1088/0964-1726/23/11/115019
- Wolfs, R.J.M., Bos, F.P. and Salet, T.A.M. (2018), "Correlation between destructive compression tests and non-destructive ultrasonic measurements on early age 3D printed concrete", Constr. Build. Mater., 181, 447-454. https://doi.org/10.1016/j.conbuildmat.2018.06.060
- Yoon, H., Kim, Y., Kim, H., Kang, J. and Koh, H.M. (2017), "Evaluation of early-age concrete compressive strength with ultrasonic sensors", Sensors, 17(8), 1817. https://doi.org/10.3390/s17081817
- Zhang, S., Zhang, Y. and Li, Z. (2018), "Ultrasonic monitoring of setting and hardening of slag blended cement under different curing temperatures by using embedded piezoelectric transducers", Constr. Build. Mater., 159, 553-560. https://doi.org/10.1016/j.conbuildmat.2017.10.124
- Zheng, Y., Chen, D., Zhou, L., Huo, L., Ma, H. and Song, G. (2018), "Evaluation of the effect of fly ash on hydration characterization in self-compacting concrete (SCC) at very early ages using piezoceramic transducers", Sensors, 18(8), 2489. https://doi.org/10.3390/s18082489