Acknowledgement
This study was supported in part by a support from Bentley Systems, Inc. The authors would like to thank Dr. Santiago Pujol, Dr. Aishwarya Puranam and Mr. Rih-Teng Wu for their help to conduct the experiment and data collection.
References
- Adhikari, R.S., Bagchi, A. and Moselhi, O. (2014), "Automated condition assessment of concrete bridges with digital imaging", Smart Struct. Syst., Int. J., 13(6), 901-925. https://doi.org/10.12989/sss.2014.13.6.901
- Agrawal, A.K., Kawaguchi, A. and Chen, Z. (2010), "Deterioration rates of typical bridge elements in New York", J. Bridge Eng., 15(4), 419-429. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000123
- Aliakbar, M., Qidwai, U., Jahanshahi, M.R., Masri, S. and Shen, W.M. (2016), "Progressive image stitching algorithm for vision based automated inspection", Proceedings of 2016 International Conference on Machine Learning and Cybernetics (ICMLC), 1, 337-343.
- Aliakbar, M., Qidwai, U. and Jahanshahi, M.R. (2019), "An evaluation of image-based structural health monitoring using integrated unmanned aerial vehicle platform", Struct. Control Health Monitor., 26(1), e2276. https://doi.org/10.1002/stc.2276
- Bay, H., Tuytelaars, T. and Van Gool, L. (2006), "Surf: Speeded Up Robust Features", Proceedings of the European Conference on Computer Vision, Springer, Berlin, Heidelberg.
- Besuner, P.M. (1976), "Residual life estimates for structures with partial thickness cracks", Proceedings of Mechanics of Crack Growth, ASTM International.
- Boller, C., Starke, P., Dobmann, G., Kuo, C.M. and Kuo, C.H. (2015), "Approaching the assessment of ageing bridge infrastructure", Smart Struct. Syst., Int. J., 15(3), 593-608. https://doi.org/10.12989/sss.2015.15.3.593
- Bottou, L. (2010), "Large-scale machine learning with stochastic gradient descent", Proceedings of COMPSTAT'2010, Physica-Verlag HD.
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput.-Aided Civil Infrastruct. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S. and Buyukozturk, O. (2018), "Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types", Comput.-Aided Civil Infrastruct. Eng., 33(9), 731-747. https://doi.org/10.1111/mice.12334
- Chen, F.C. and Jahanshahi, M.R. (2018), "NB-CNN: deep learning-based crack detection using convolutional neural network and Naive Bayes data fusion", IEEE Transact. Indust. Electron., 65(5), 4392-4400. https://doi.org/10.1109/TIE.2017.2764844
- Choi, J., Yeum, C.M., Dyke, S.J. and Jahanshahi, M.R (2018), "Computer-aided approach for rapid post-event visual evaluation of a building facade", Multidisciplinary Digital Publishing Institute, 18(9), 3017. https://doi.org/10.3390/s18093017
- Cruse, T.A. and Besuner, P.M. (1975), "Residual life prediction for surface cracks in complex structural details", J. Aircraft, 12(4), 369-375. https://doi.org/10.2514/3.44458
- Dhawan, S.K., Bindal, A., Bhalla, S. and Bhattacharjee, B. (2019), "Expected residual service life of reinforced concrete structures from current strength considerations", Adv. Struct. Eng., 22(7), 1631-1643. https://doi.org/10.1177/1369433218818001
- Duan, Y., Chen, Q., Zhang, H., Yun, C.B., Wu, S. and Zhu, Q. (2019), "CNN-based damage identification method of tied-arch bridge using spatial-spectral information", Smart Struct. Syst., Int. J., 23(5), 507-520. https://doi.org/10.12989/sss.2019.23.5.507
- Esser, B. and Huston, D.R. (2005), "Versatile robotic platform for structural health monitoring and surveillance", Smart Struct. Syst., Int. J., 1(4), 325-338. https://doi.org/10.12989/sss.2005.1.4.325
- Fischler, M.A. and Bolles, R.C. (1981), "Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography", Communicat. ACM, 24(6), 381-395. https://doi.org/10.1145/358669.358692
- Ghorbani, R., Matta, F. and Sutton, M.A. (2015), "Full-field deformation measurement and crack mapping on confined masonry walls using digital image correlation", Experim. Mech., 55(1), 227-243. https://doi.org/10.1007/s11340-014-9906-y
- Girshick, R. (2015), "Fast R-CNN", Proceedings of the IEEE International Conference on Computer Vision.
- Girshick, R., Donahue, J., Darrell, T. and Malik, J. (2014), "Rich feature hierarchies for accurate object detection and semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
- Glorot, X. and Bengio, Y. (2010), "Understanding the difficulty of training deep feedforward neural networks", Proceedings of the 13th International Conference on Artificial Intelligence and Statistics.
- He, K., Zhang, X., Ren, S. and Sun, J. (2001), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
- Hosang, J.H., Benenson, R. and Schiele, B. (2017), "Learning non-maximum suppression", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
- Jahanshahi, M.R. and Masri, S.F. (2013), "A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation", Smart Mater. Struct., 22(3), 035019. https://doi.org/10.1088/0964-1726/22/3/035019
- Jahanshahi, M.R. and Masri, S.F. (2014), "Image-based crack detection", Google Patents, 22(3), 8,873,837.
- Jahanshahi, M.R., Kelly, J.S., Masri, S.F. and Sukhatme, G.S. (2009), "A survey and evaluation of promising approaches for automatic image-based defect detection of bridge structures", Struct. Infrastruct. Eng., 5(6), 455-486. https://doi.org/10.1080/15732470801945930
- Jahanshahi, M.R., Masri, S.F. and Sukhatme, G.S. (2011), "Multiimage stitching and scene reconstruction for evaluating defect evolution in structures", Struct. Health Monitor., 10(6), 643-657. https://doi.org/10.1177/1475921710395809
- Jahanshahi, M.R., Masri, S.F., Padgett, C.W. and Sukhatme, G.S. (2013), "An innovative methodology for detection and quantification of cracks through incorporation of depth perception", Mach. Vision Applicat., 24(2), 227-241. https://doi.org/10.1007/s00138-011-0394-0
- Jahanshahi, M.R., Chen, F.C., Joffe, C. and Masri, S.F. (2017a), "Vision-based quantitative assessment of microcracks on reactor internal components of nuclear power plants", Struct. Infrastruct. Eng., 13(8), 1013-1026. https://doi.org/10.1080/15732479.2016.1231207
- Jahanshahi, M.R., Chen, F.C., Ansar, A., Padgett, C.W., Clouse, D. and Bayard, D.S. (2017b), "Accurate and robust scene reconstruction in the presence of misassociated features for aerial sensing", J. Comput. Civil Eng., 31(6), 04017056. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000702
- Jahanshahi, M.R., Shen, W.M., Mondal, T.G., Abdelbarr, M., Masri, S.F. and Qidwai, U.A. (2017c), "Reconfigurable swarm robots for structural health monitoring: a brief review", Int. J. Intel. Robot. Applicat., 1(3), 287-305. https://doi.org/10.1007/s41315-017-0024-8
- Kim, H., Ahn, E., Shin, M. and Sim, S.H. (2019), "Crack and noncrack classification from concrete surface images using machine learning", Struct. Health Monitor., 18(3), 725-738. https://doi.org/10.1177/1475921718768747
- Kong, X. and Li, J. (2018), "Vision-based fatigue crack detection of steel structures using video feature tracking", Comput.-Aided Civil Infrastruct. Eng., 33(9), 783-799. https://doi.org/10.1111/mice.12353
- Kong, X. and Li, J. (2019), "Non-contact fatigue crack detection in civil infrastructure through image overlapping and crack breathing sensing", Automat. Constr., 99, 125-139. https://doi.org/10.1016/j.autcon.2018.12.011
- Lee, B.Y., Kim, Y.Y., Yi, S.T. and Kim, J.K. (2013), "Automated image processing technique for detecting and analysing concrete surface cracks", Struct. Infrastruct. Eng., 9(6), 567-577. https://doi.org/10.1080/15732479.2011.593891
- Levenberg, K. (1944), "A method for the solution of certain nonlinear problems in least squares", Quarterly Appl. Mathe., 2(2), 164-168. https://doi.org/10.1090/qam/10666
- Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P. and Zitnick, C.L. (2001), "Microsoft COCO: Common Objects in Context", Proceedings of the European Conference on Computer Vision, Springer, Cham.
- Lowe, D.G. (2004), "Distinctive image features from scaleinvariant keypoints", Int. J. Comput. Vision, 60(2), 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
- Marquardt, D.W. (1963), "An algorithm for least-squares estimation of nonlinear parameters", J. Soc. Indust. Appl. Mathe., 11(2), 431-441. https://doi.org/10.1137/0111030
- Matheron, G. (1975), "Random Sets and Integral Geometry", 91(4), 1301-1328.
- Minkowski, H. (1989), "Volumen und oberflache", Proceedings of Ausgewahlte Arbeiten zur Zahlentheorie und zur Geometrie, Springer, Vienna, Austria.
- Mohanty, S., Chattopadhyay. A. and Peralta, P. (2010), "Adaptive residual useful life estimation of a structural hotspot", J. Intel. Mater. Syst. Struct., 21(3), 321-335. https://doi.org/10.1177/1045389X09357972
- Myung, H., Wang, Y., Kang, S.C. and Chen, X. (2014), "Survey on robotics and automation technologies for civil infrastructure", University of Canterbury, Mechanical Engineering.
- Otsu, N. (1979), "A threshold selection method from gray-level histograms", IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66. https://doi.org/10.1109/TSMC.1979.4310076
- Ren, S., He, K., Girshick, R. and Sun, J. (2015), "Faster R-CNN: Towards real-time object detection with region proposal networks", Proceedings of Advances in Neural Information Processing Systems.
- Salembier, P. (1990), "Comparison of some morphological segmentation algorithms based on contrast enhancement", Proceedings of 5. European Signal Processing Conference.
- Spencer Jr., B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Eng., 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Shan, B., Zheng, S. and Ou, J. (2016), "A stereovision-based crack width detection approach for concrete surface assessment", KSCE J. Civil Eng., 20(2), 803-812. https://doi.org/10.1007/s12205-015-0461-6
- Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A.A. (2001a), "Inception-v4, Inception-Resnet and the impact of residual connections on learning", Proceedings of the 31st AAAI Conference on Artificial Intelligence.
- Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z. (2001b), "Rethinking the inception architecture for computer vision", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
- Tanathong, S. and Lee, I. (2013), "Translation-based KLT tracker under severe camera rotation using GPS/INS data", IEEE Geosci. Remote Sensing Lett., 11(1), 64-68. https://doi.org/10.1109/LGRS.2013.2245858
- Van Uitert, R. and Bitter, I. (2007), "Subvoxel precise skeletons of volumetric data based on fast marching methods", Medical Physics, 34(2), 627-638. https://doi.org/10.1118/1.2409238
- Wang, X., Balakrishnan, N. and Guo, B. (2014), "Residual life estimation based on a generalized Wiener degradation process", Reliabil. Eng. Syst. Safety, 124, 13-23. https://doi.org/10.1016/j.ress.2013.11.011
- Wu, R.T., Singla, A., Jahanshahi, M.R., Bertino, E., Ko, B.J., Verma, D. (2019), "Pruning deep convolutional neural networks for efficient edge computing in condition assessment of infrastructures", Comput.-Aided Civil Infrastruct. Eng., 34(9), 774-789. https://doi.org/10.1111/mice.12449
- Yamaguchi, T. and Hashimoto, S. (2010), "Fast crack detection method for large-size concrete surface images using percolation-based image processing", Mach. Vision Applicat., 21(5), 797-809. https://doi.org/10.1007/s00138-009-0189-8
- Yeum, C.M., Choi, J. and Dyke, S.J. (2017), "Autonomous image localization for visual inspection of civil infrastructure", Smart Mater. Struct., 26(3), 035051. https://doi.org/10.1088/1361-665X/aa510e
- Yeum, C.M., Choi, J. and Dyke, S.J. (2019), "Automated region-of-interest localization and classification for vision-based visual assessment of civil infrastructure", Struct. Health Monitor., 18(3), 675-689. https://doi.org/10.1177/1475921718765419
- Yu, S.N., Jang, J.H. and Han, C.S. (2007), "Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel", Automat. Constr., 16(3), 255-261. https://doi.org/10.1016/j.autcon.2006.05.003
- Zhu, Z., German, S. and Brilakis, I. (2011), "Visual retrieval of concrete crack properties for automated post-earthquake structural safety evaluation", Automat. Constr., 20(7), 874-883. https://doi.org/10.1016/j.autcon.2011.03.004