References
- Ahmadi, H. and Foroutan, K. (2019), "Nonlinear primary resonance of spiral stiffened functionally graded cylindrical shells with damping force using the method of multiple scales", Thin-Wall Struct., 135, 33-44. https://doi.org/10.1016/j.tws.2018.10.028
- Bailey, T. and Hubbard, J.E. (1985), "Distributed piezoelectric-polymer active vibration control of a cantilever beam", J. Guidance Control Dyn., 8(5), 605-611. https://doi.org/10.2514/3.20029
- Baillargeon, B.P. and Vel, S.S. (2005), "Active vibration suppression of sandwich beams using piezoelectric shear actuators: Experiments and numerical simulations", J. Intell. Mater. Syst. Struct., 16(6), 517-530. https://doi.org/10.1177/1045389X05053154
- Bich, D.H., Van Dung, D., Nam, V.H. and Phuong, N.T. (2013), "Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression", Int. J. Mech. Sci., 74, 190-200. https://doi.org/10.1016/j.ijmecsci.2013.06.002
- Biglar, M., Mirdamadi, H.R. and Danesh, M. (2014), "Optimal locations and orientations of piezoelectric transducers on cylindrical shell based on gramians of contributed and undesired rayleigh-ritz modes using genetic algorithm", J. Sound Vib., 333(5), 1224-1244. https://doi.org/10.1016/j.jsv.2013.10.025
- Boukhelf, F., Bouiadjra, M.B., Bouremana, M. and Tounsi, A. (2018), "Hygro-thermo-mechanical bending analysis of FGM plates using a new HSDT", Smart Struct. Syst., Int. J., 21(1), 75-97. https://doi.org/10.12989/sss.2018.21.1.075
- Brush, D.O. and Almroth, B.O. (1975), Buckling of Bars, Plates, and Shells, McGraw-Hill New York, NY, USA.
- Chen, Y.Z. (2018), "Transfer matrix method for solution of FGMs thick-walled cylinder with arbitrary inhomogeneous elastic response", Smart Struct. Syst., Int. J., 21(4), 469-477. https://doi.org/10.12989/sss.2018.21.4.469
- Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", Aerosp. Sci. Technol., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020
- Correia, I.P., Soares, C.M.M., Soares, C.A.M. and Herskovits, J. (2002), "Active control of axisymmetric shells with piezoelectric layers: A mixed laminated theory with a high order displacement field", Comput. Struct., 80(27-30), 2265-2275. https://doi.org/10.1016/S0045-7949(02)00239-0
- Duc, N.D. (2013), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", Compos. Struct., 99, 88-96. https://doi.org/10.1016/j.compstruct.2012.11.017
- Duc, N.D. (2016), "Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy's third-order shear deformation shell theory", Eur. J. Mech. A-Solid., 58, 10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004
- Duc, N.D. (2018), "Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations", J. Sandw. Struct. Mater., 20(3), 351-378. https://doi.org/10.1177/1099636216653266
- Duc, N.D. and Cong, P.H. (2018), "Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson's ratio in auxetic honeycombs", J. Sandw. Struct. Mater., 20(6), 692-717. https://doi.org/10.1177/1099636216674729
- Dung, D. and Nam, V.H. (2014), "Nonlinear dynamic analysis of eccentrically stiffened functionally graded circular cylindrical thin shells under external pressure and surrounded by an elastic medium", Eur. J. Mech. A-Solid., 46, 42-53. https://doi.org/10.1016/j.euromechsol.2014.02.008
- Duc, N.D. and Thang, P.T. (2015), "Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened s-fgm circular cylindrical shells surrounded on elastic foundations", Aerosp. Sci. Technol., 40, 115-127. https://doi.org/10.1016/j.ast.2014.11.005
- Duc, N.D., Anh, V.T.T. and Cong, P.H. (2014), "Nonlinear axisymmetric response of FGM shallow spherical shells on elastic foundations under uniform external pressure and temperature", Eur. J. Mech. A-Solid., 45, 80-89. https://doi.org/10.1016/j.euromechsol.2013.11.008
- Duc, N.D., Cong, P.H., Anh, V.M., Quang, V.D., Tran, P., Tuan, N.D. and Thinh, N.H. (2015), "Mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic foundations and in thermal environment", Compos. Struct., 132, 597-609. https://doi.org/10.1016/j.compstruct.2015.05.072
- Duc, N.D., Bich, D.H. and Cong, P.H. (2016), "Nonlinear thermal dynamic response of shear deformable FGM plates on elastic foundations", J. Therm. Stress., 39(3), 278-297. https://doi.org/10.1080/01495739.2015.1125194
- Duc, N.D., Lee, J., Nguyen-Thoi, T. and Thang, P.T. (2017a), "Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations", Aerosp. Sci. Technol., 68, 391-402. https://doi.org/10.1016/j.ast.2017.05.032
- Duc, N.D., Nguyen, P.D. and Khoa, N.D. (2017b), "Nonlinear dynamic analysis and vibration of eccentrically stiffened S-FGM elliptical cylindrical shells surrounded on elastic foundations in thermal environments", Thin Wall Struct., 117, 178-189. https://doi.org/10.1016/j.tws.2017.04.013
- Duc, N.D., Quang, V.D., Nguyen, P.D. and Chien, T.M. (2018a), "Nonlinear dynamic response of functionally graded porous porous plates on elastic foundation subjected to thermal and mechanical loads using the first order shear deformation theory", J. Appl. Comput. Mech., 4(4), 245-259. https://doi.org/10.22055/JACM.2018.23219.1151
- Duc, N.D., Khoa, N.D. and Thiem, H.T. (2018b), "Nonlinear thermo-mechanical response of eccentrically stiffened Sigmoid FGM circular cylindrical shells subjected to compressive and uniform radial loads using the Reddy's third-order shear deformation shell theory", Mech. Adv. Mater. Struct., 25(13), 1156-1167. https://doi.org/10.1080/15376494.2017.1341581
- Duc, N.D., Kim, S.E. and Chan, D.Q. (2018c), "Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT", J Therm. Stress., 41(3), 331-365. https://doi.org/10.1080/01495739.2017.1398623
- Duc, N.D., Hadavinia, H., Quan, T.Q. and Khoa, N.D. (2019), "Free vibration and nonlinear dynamic response of imperfect nanocomposite FG-CNTRC double curved shallow shells in thermal environment", Eur. J. Mech. A-Solid., 75, 355-366. https://doi.org/10.1016/j.compstruct.2015.05.072
- Foroutan, K., Shaterzadeh, A. and Ahmadi, H. (2018), "Nonlinear dynamic analysis of spiral stiffened functionally graded cylindrical shells with damping and nonlinear elastic foundation under axial compression", Struct. Eng. Mech., Int. J., 66(3), 295-303. https://doi.org/10.12989/sem.2018.66.3.295
- Fuller, C.C., Elliott, S. and Nelson, P.A. (1996), Active Control of Vibration, Academic Press.
- Ghiasian, S., Kiani, Y. and Eslami, M. (2013), "Dynamic buckling of suddenly heated or compressed fgm beams resting on nonlinear elastic foundation", Compos. Struct., 106, 225-234. https://doi.org/10.1016/j.compstruct.2013.06.001
- Hasheminejad, S.M. and Oveisi, A. (2016), "Active vibration control of an arbitrary thick smart cylindrical panel with optimally placed piezoelectric sensor/actuator pairs", Int. J. Mech. Mater. Des., 12(1), 1-16. https://doi.org/10.1007/s10999-015-9293-2
- Hong, S.Y. (1993), "Active vibration control of adaptive flexible structures using piezoelectric smart sensors and actuators", J. Acoust. Soc. Am., 93(2), 1205-1205. https://doi.org/10.1121/1.405523
- Jha, A. and Inman, D. (2002), "Piezoelectric actuator and sensor models for an inflated toroidal shell", Mech. Syst. Signal Pr., 16(1), 97-122. https://doi.org/10.1006/mssp.2001.1442
- Khoa, N.D., Thiem, H.T. and Duc, N.D. (2019), "Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy's third-order shear deformation shell theory", Mech. Adv. Mater. Struct., 26(3), 248-259. https://doi.org/10.1080/15376494.2017.1341583
- Kiani, Y., Sadighi, M. and Eslami, M. (2013), "Dynamic analysis and active control of smart doubly curved FGM panels", Compos. Struct., 102, 205-216. https://doi.org/10.1016/j.compstruct.2013.02.031
- Kim, S.J., Hwang, J.S., Mok, J. and Ko, H.M. (2001), "Active vibration control of composite shell structure using modal sensor/actuator system", Smart. Struct. Integr. Syst., 4327, 688-697. https://doi.org/10.1117/12.436576
- Kumar, R.S. and Ray, M. (2013), "Active control of geometrically nonlinear vibrations of doubly curved smart sandwich shells using 1-3 piezoelectric composites", Compos. struct., 105, 173-187. https://doi.org/10.1016/j.compstruct.2013.03.010
- Kwak, M.K. and Yang, D.-H. (2013), "Active vibration control of a ring-stiffened cylindrical shell in contact with unbounded external fluid and subjected to harmonic disturbance by piezoelectric sensor and actuator", J. Sound Vib., 332(20), 4775-4797. https://doi.org/10.1016/j.jsv.2013.04.014
- Kwak, M.K., Heo, S. and Jeong, M. (2009), "Dynamic modelling and active vibration controller design for a cylindrical shell equipped with piezoelectric sensors and actuators", J. Sound Vib., 321(3-5), 510-524. https://doi.org/10.1016/j.jsv.2008.09.051
- Kwak, M.K., Yang, D.-H. and Lee, J.-H. (2012), "Active vibration control of a submerged cylindrical shell by piezoelectric sensors and actuatorsed", Int. Soc. Optics Photon., 8341, 83412F. https://doi.org/10.1117/12.916032
- Loghmani, A., Danesh, M., Kwak, M.K. and Keshmiri, M. (2017), "Vibration suppression of a piezo-equipped cylindrical shell in a broad-band frequency domain", J. Sound Vib., 411, 260-277. https://doi.org/10.1016/j.jsv.2017.08.051
- Ma, X., Jin, G. and Liu, Z. (2014), "Active structural acoustic control of an elastic cylindrical shell coupled to a two-stage vibration isolation system", Int. J. Mech. Sci., 79, 182-194. https://doi.org/10.1016/j.ijmecsci.2013.12.010
- Moita, J.M.S., Correia, V.M.F., Martins, P.G., Soares, C.M.M. and Soares, C.A.M. (2006), "Optimal design in vibration control of adaptive structures using a simulated annealing algorithm", Compos. Struct., 75(1-4), 79-87. https://doi.org/10.1016/j.compstruct.2006.04.062
- Ogata, K. and Yang, Y. (2002), Modern Control Engineering, Prentice Hall, India.
- Pan, X. and Hansen, C. (1997), "Active control of vibration transmission in a cylindrical shell", J. Sound Vib., 203(3), 409-434. https://doi.org/10.1006/jsvi.1996.9987
- Pellicano, F. (2007), "Vibrations of circular cylindrical shells: Theory and experiments", J. Sound Vib., 303(1-2), 154-170. https://doi.org/10.1016/j.jsv.2007.01.022
- Plattenburg, J., Dreyer, J.T. and Singh, R. (2017), "Vibration control of a cylindrical shell with concurrent active piezoelectric patches and passive cardboard liner", Mech. Syst. Signal Pr., 91, 422-437. https://doi.org/10.1016/j.ymssp.2016.11.008
- Qin, Z., Chu, F. and Zu, J. (2017), "Free vibrations of cylindrical shells with arbitrary boundary conditions: A comparison study", Int. J. Mech. Sci., 133, 91-99. https://doi.org/10.1016/j.ijmecsci.2017.08.012
- Roy, T. and Chakraborty, D. (2009), "Optimal vibration control of smart fiber reinforced composite shell structures using improved genetic algorithm", J. Sound Vib., 319(1-2), 15-40. https://doi.org/10.1016/j.jsv.2008.05.037
- Sewall, J.L. and Naumann, E.C. (1968), "An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners", NASA TN D-4705.
- Sewall, J.L., Clary, R.R. and Leadbetter, S.A. (1964), "An experimental and analytical vibration study of a ring-stiffened cylindrical shell structure with various support conditions", NASA TN D-2398.
- Sheng, G. and Wang, X. (2009), "Active control of functionally graded laminated cylindrical shells", Compos. Struct., 90(4), 448-457. https://doi.org/10.1016/j.compstruct.2010.06.007
- Sheng, G. and Wang, X. (2010), "Response and control of functionally graded laminated piezoelectric shells under thermal shock and moving loadings", Compos. Struct., 93(1), 132-141. https://doi.org/10.1016/j.compstruct.2010.06.007
- Sohn, J.W., Jeon, J. and Choi, S.-B. (2014), "Active vibration control of ring-stiffened cylindrical shell structure using macro fiber composite actuators", J. Nanosci. Nanotechno., 14(10), 7526-7532. https://doi.org/10.1166/jnn.2014.9748
- Song, Z., Zhang, L. and Liew, K. (2016), "Active vibration control of cnt-reinforced composite cylindrical shells via piezoelectric patches", Compos. Struct., 158, 92-100. https://doi.org/10.1016/j.compstruct.2016.09.031
- Tan, X. and Vu-Quoc, L. (2005), "Optimal solid shell element for large deformable composite structures with piezoelectric layers and active vibration control", Int. J. Numer. Meth. Eng., 64(15), 1981-2013. https://doi.org/10.1002/nme.1433
- Thom, D.V., Kien, N.D., Duc, N.D., Duc, D.H. and Tinh, B.Q. (2017), "Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory", Thin-Wall. Struct., 119, 687-699. https://doi.org/10.1016/j.tws.2017.07.022
- Tounsi, A. and Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., Int. J., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
- Volmir, A.S. (1972), Non-linear Dynamics of Plates and Shells, Science Edition M, USSR.
- Wrona, S. and Pawelczyk, M. (2013), "Controllability-oriented placement of actuators for active noise-vibration control of rectangular plates using a memetic algorithm", Arch. Acoust., 38(4), 529-536. https://doi.org/10.2478/aoa-2013-0062
- Yue, H., Lu, Y., Deng, Z. and Tzou, H. (2017), "Experiments on vibration control of a piezoelectric laminated paraboloidal shell", Mech. Syst. Signal Pr., 82, 279-295. https://doi.org/10.1016/j.ymssp.2016.05.023
Cited by
- Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2020, https://doi.org/10.12989/cac.2021.27.1.073