DOI QR코드

DOI QR Code

Evaluation of Fatigue Resistance of Selected Warm-mix Asphalt Concrete

준고온 아스팔트 콘크리트 피로저항성 평가

  • Kim, Sungun (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Lee, Sung-Jin (Pavement Research Division, Korea Expressway Corporation Research Institute) ;
  • Kim, Kwang W. (Department of Regional Infrastructure Engineering, Kangwon National University)
  • Received : 2020.03.06
  • Accepted : 2020.04.03
  • Published : 2020.05.31

Abstract

Since some warm-mix asphalt (WMA) concretes were known to show poorer rut resistance than the hot-mix asphalt (HMA) concretes, many studies were performed in efforts of improving its performance at high temperature. The reason is assumed to be due to the moisture remaining in aggregates dried at lower temperature. Therefore, not only the rut resistance, the crack resistance of WMA concrete was also in question. In this study, fatigue life of WMA concrete was evaluated in comparison with HMA using 3-point bending (3PB) beam test. The asphalt mixtures were prepared based on Korean mix-design guide using a 13 mm dense-graded aggregate and 6 binders; two HMA binders and four WMA binders. By 3PB fatigue test, normal (unmodified) and polymer-modified WMA concretes were evaluated in comparison with normal and polymer-modified HMA concretes at a low temperature (-5℃). The results showed that most of WMA concretes showed longer fatigue lives than HMA concretes, even though the same PG binders were used for HMA and WMA. This result indicates that the WMA concretes have stronger resistance against fatigue cracking than HMA at the low temperature, and this result is in contrast to the high-temperature performance test.

Keywords

References

  1. Angelo, J., E. Harm, J. Bartoszek, G. Baumgardner, M. Corrigan, J. Cowsert, T. Harman, M. Jamshidi, W. Jones, D. Newcomb, B. Prowell, R. Sines, and B. Yeaton, 2008. Warm-mix asphalt: European practice. FHWA-PL-08-007, Office of International Programs Office of Policy, Federal Highway Administration, U.S. Department of Transportation (FHWA), American Association of State Highway and Transportation Officials (AASHTO), National Cooperative Highway Research Program (NCHRP).
  2. Australian Asphalt Pavement Association, 2001. Warm mix asphalt-A state of the art review. Advisory Note #17, http://www.warmmixasphalt.org/submissions/33_20071127_AdvisoryNote17.pdf, Accessed 14 Jan. 2020.
  3. Doh, Y. S., K. K. Yun, S. N. Amirkhanian, and K. W. Kim, 2007. Framework for developing static strength test for measuring deformation resistance of asphalt concrete mixtures. Construction and Building Materials 21(12): 2047-2058. doi:10.1016/j.conbuildmat.2006.06.032.
  4. El Hussein, H. M., and A. O. Halim, 1993. Differential thermal expansion/contraction: A mechanistic approach to adhesion in asphalt concrete. Canadian Journal of Civil Engineering 20(3): 366-373. doi:10.1139/l93-051.
  5. Hong, J. P., 2012. Evaluation of fracture characteristics of warm-mix asphalt concretes at low temperatures. Ph.D. diss., Kangwon National University, Chuncheon, Republic of Korea (in Korean).
  6. Kim, K. W., S. N. Amirkhanian, H. H. Kim, M. S. Lee, and Y. S. Doh, 2011. A new static strength test for characterization of rutting of dense-graded asphalt mixtures. Journal of Testing and Evaluation (ASTM) 39(1): 59-66. doi:10.1520/JTE102385.
  7. Kim, K. W., Y. S. Doh, and S. N. Amirkhanian, 2004. Feasibility of deformation strength for estimation of rut resistance of asphalt concrete. Road Materials and Pavement Design 5(3): 303-322. doi:10.1080/14680629.2004.9689974.
  8. Kim, K. W., and M. El Hussein, 1995. Effect of differential thermal contraction on fracture toughness of asphalt materials at low temperatures. Journal of Association of Asphalt Paving Technologists (AAPT) 64: 474-499.
  9. Kim, K. W., and M. El Hussein, 1997. Variation of fracture toughness of asphalt concrete under low temperatures. Construction and Building Materials 11(7-8): 403-411. doi:10.1016/S0950-0618(97)00030-5.
  10. Kim, K. W., S. J. Kweon, Y. S. Doh, and T. S. Park, 2003. Fracture toughness of polymer-modified asphalt concrete at low temperatures. Canadian Journal of Civil Engineering 30(2): 406-413. doi:10.1139/l02-101.
  11. Kim, K. W., S. Z. Kwon, Y. S. Doh, and S. F. Li, 1999. Evaluation of Poisson's ratio of polymer-modified asphalt concretes. Journal of Korean Society of Agricultural Engineers 41(5): 104-111 (in Korean).
  12. Kim, S., S. H. Lee, O. Kwon, J. Y. Han, Y. S. Kim, and K. W. Kim, 2016. Estimation of service life reduction of asphalt pavement due to short-term ageing measured by GPC from of asphalt mixture. Road Materials and Pavement Design 17(1): 153-167. doi:10.1080/14680629.2015.1066704.
  13. Kim, S., and K. W. Kim, 2014. Laboratory evaluation of warm-mix asphalt mixture for rural road pavement. In Proceedings of the 11th International Joint Symposium between Japan and Korea, Chuncheon, Korea, 2014. 10. 29-30.
  14. Kim, S., J. Park, S. Lee, and K. W. Kim, 2014. Performance of modified WMA mixtures prepared using the same class PG binders of HMA mixtures. Journal of Testing and Evaluation (ASTM) 42(2): 347-356. doi:10.1520/JTE20120367.
  15. Kim, S ., J . Shen, S. J . Lee, Y . S. K im, and K. W . Kim, 2019. Examination of physical property degradation due to severe short-term aging and effect of hydrated lime as antioxidant in asphalt mixture. Road Materials and Pavement Design 20(7): 1638-1652. doi:10.1080/14680629.2018.1473281.
  16. Kim, K. W., H. H. Kim, N. W. Park, H. I. Lee, and Y. S. Doh, 2007. Characterization of LDPE-modified asphalt concrete mixes. Journal of Advanced Mineral Aggregate Composites 12(2): 1-12 (in Korean).
  17. Kwon, S. Z., 1999. Fracture behavior of polymer-modified bituminous concrete at low temperatures. Ph.D. diss., Kangwon National University, Chuncheon, Korea (in Korean).
  18. Lee, H. I., H. H. Kim, N. W. Park, and K. W. Kim, 2008. Aging, cracking and deformation characteristics of selected polymer-modified asphalt mixtures. Journal of Korean Society of Road Engineers 10(2): 205-219 (in Korean).
  19. Ministry of Land, Infrastructure and Transport (MLIT), 2017. Guideline for Construction of Asphalt Concrete Pavement (in Korean).
  20. Newcomb, D., 2018. An introduction to warm-mix asphalt. National Asphalt Pavement Association (NAPA). http://www.warmmixasphalt.org/submissions/420071125_introduction_to_warm-mix_asphalt.pdf. Accessed 24 Mar. 2020.
  21. Park, J. Y., S. U. Kim, and K. W. Kim, 2012. Performance of polymer-modified warm-mix asphalt concrete at high service temperature. In Proceedings of 7th Asian Symposium on Polymers in Concrete (ASPIC 2012), Istanbul Technical University, Istanbul, Turkey, Ed. by Ozkul et al. October 3-5, 193-201.
  22. Punith, V. S., F. Xiao, and S. N. Amirkhanian, 2012. Moisture and rutting resistance of foamed asphalt mixtures containing recycled coal ash and shingles with moist aggregates. Journal of ASTM International 9(2): 1-11. doi:10.1520/JAI103660.
  23. Xiao, F., and S. N. Amirkhanian, 2010. Effects of liquid antistrip additives on rheology and moisture susceptibility of water bearing warm mixtures. Construction and Building Materials 24(9): 1649-1655. doi:10.1016/j.conbuildmat.2010.02.027.
  24. Yeon, K. S., S. Kim, H. J. Lee, and K. W. Kim, 2014. Low temperature tensile characteristics of warm-mix asphalt mixtures. Journal of Testing and Evaluation (ASTM) 42(4): 903-911. doi:10.1520/JTE20120364.
  25. Yoo, M. Y., S. H. Jeong, J. Y. Park, H. H. Kim, and K. W. Kim, 2011. Low temperature fracture characteristics of selected warm-mix asphalt concretes. Journal of the Transportation Research Board, TRB 2208: 40-47. doi:10.3141/2208-06.
  26. Yun, Y. B., M. S. Lee, S. H. Jeong, S. Lee, S. Kim, S. J. Lee, and K. W. Kim, 2014. Rut-related performance of polymer-modified WMA mixture in comparison with tensile property. In Proceedings of USB, International Symposium on Advanced Technologies in Asphalt Pavement (ATAP 2014), Chuncheon, Republic of Korea.