DOI QR코드

DOI QR Code

Improved evaluation of ring tensile test ductility applied to neutron irradiated 42XNM tubes in the temperature range of (500-1100)℃

  • Gurovich, B.A. (National Research Center "Kurchatov Institute") ;
  • Frolov, A.S. (National Research Center "Kurchatov Institute") ;
  • Fedotov, I.V. (National Research Center "Kurchatov Institute")
  • Received : 2019.08.16
  • Accepted : 2019.11.19
  • Published : 2020.06.25

Abstract

Chromium-nickel alloy 42XNM (XHM-1, Bochvalloy) is considered as a promising material for future generations of nuclear reactors, primarily as a material for the fuel elements shells in the development of accident tolerant fuel. However, as with most nickel-based alloys, 42ХNМ is characterized by a sharp decrease in plastic properties in the temperature range of (500-900)℃. This effect is enhanced by neutron irradiation. Preliminary tests of ring samples of 42XNM alloy (after irradiation as a part of the VVER-1000 control system) in the temperature range of ductility failure showed that the standard technique for processing tensile diagrams does not allow to evaluate the plastic properties correctly at low strains. Therefore, in this work, the alternative method for testing ring samples from materials with low plastic characteristics was developed. It was shown that the minimum value of the permanent strain of the irradiated 42XNM alloy in the temperature range of (500-1100)℃, determined by the alternative method, was ~1.6% at 750 ℃.

Keywords

References

  1. A.F. Rowcliffe, L.K. Mansur, D.T. Hoelzer, R.K. Nanstad, Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors, J. Nucl. Mater. 392 (2009) 341-352, https://doi.org/10.1016/j.jnucmat.2009.03.023.
  2. M.I. Solonin, A.B. Alekseev, Y.I. Kazennov, V.F. Khramtsov, V.P. Kondra'ev, T.A. Krasina, V.N. Rechitsky, V.N. Stepankov, S.N. Votinov, XHM-1 alloy as a promising structural material for water-cooled fusion reactor components, J. Nucl. Mater. 233-237 (1996) 586-591, https://doi.org/10.1016/S0022-3115(96)00297-8.
  3. A.M. Savchenko, M.V. Leontieva-Smirnova, G.V. Kulakov, V.N. Rechitsky, Y.V. Konovalov, A.A. Nikitina, Peculiarities of stainless steels application as ATF in VVER'S, in: TopFuel-2018 Conf., Prague, Czech Repuublic, September 30 - October 04, 2018 (n.d).
  4. K. Kurakin, S. Kushmanov, Neutron physics calculation for VVER-1000 absorber element lifetime determination, in: 19 AER Symp. VVER React. Phys. React. Saf., Varna, Bulgaria, September 21-25, 2009, (n.d).
  5. A.V. Vatulin, V.P. Kondrat'Ev, V.N. Rechitskii, M.I. Solonin, Corrosion and radiation resistance of "bochvaloy" nickel-chromium alloy, Met. Sci. Heat Treat. 46 (2004) 469-473, https://doi.org/10.1007/s11041-005-0004-8.
  6. M.I. Solonin, A.B. Alekseev, S.A. Averin, Y.A. Burenkov, V.M. Chernov, B.K. Kardashev, V.P. Kondrat'ev, A.V. Kozlov, V.N. Rechitsky, S.N. Votinov, Cr-Ni alloys for fusion reactors, J. Nucl. Mater. (1998) 1762-1766, https://doi.org/10.1016/S0022-3115(98)00406-1, 258-263.
  7. A.A. Sheldyakov, V.Y. Shishin, V.V. Yakovlev, G.V. Kulakov, Y.V. Konovalov, Effect of irradiation on physical and mechanical properties and structure of chromium-nickel alloy 42ХНМ, in: 11th Conf. React. Mater. Sci., Dimitrovgrad, Russia, May 27-31, 2019 (n.d).
  8. L. Zheng, G. Schmitz, Y. Meng, R. Chellali, R. Schlesiger, Mechanism of intermediate temperature embrittlement of ni and ni-based superalloys, Crit. Rev. Solid State Mater. Sci. 37 (2012) 181-214, https://doi.org/10.1080/10408436.2011.613492.
  9. B. Du, L. Sheng, Z. Hu, C. Cui, J. Yang, X. Sun, Investigation on the microstructure and tensile behavior of a Ni-based IN792 superalloy, Adv. Mech. Eng. 10 (2018) 1-8, https://doi.org/10.1177/1687814017752167.
  10. C.L. White, J.H. Schneibel, R.A. Padgett, High temperature embrittlement of NI and Ni-Cr alloys by trace elements, Metall. Trans. A. 14 (1983) 595-610, https://doi.org/10.1007/bf02643776.
  11. L. Jiang, X. Ye, C. Cui, H. Huang, B. Leng, Z. Li, X. Zhou, Intermediate temperature embrittlement of one new Ni-26W-6Cr based superalloy for molten salt reactors, Mater. Sci. Eng. A 668 (2016) 137-145, https://doi.org/10.1016/j.msea.2016.04.032.
  12. W. Yang, M. Xu, Y. Meng, L. Zheng, X. Meng, Verification of interpretation of dynamic strain aging for intermediate temperature embrittlement in Ni-Bi alloy, J. Iron Steel Res. Int. 22 (2015) 602-606, https://doi.org/10.1016/S1006-706X(15)30046-7.
  13. M.A. Stopher, The effects of neutron radiation on nickel-based alloys, Mater. Sci. Technol. 33 (2017) 518-536, https://doi.org/10.1080/02670836.2016.1187334.
  14. J.T. Ward, J.K. Witter, T.M. Angeliu, Assessing the effects of radiation damage on Ni-base alloys for the prometheus space reactor system, J. Nucl. Mater. 366 (2007) 223-237, https://doi.org/10.1016/j.jnucmat.2007.01.217.
  15. H. Chen, Y. Hai, R. Liu, L. Jiang, X. xi Ye, J. Li, W. Xue, W. Wang, M. Tang, L. Yan, W. Yin, X. Zhou, The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy under Xe26+ ion irradiation, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 421 (2018) 50-58, https://doi.org/10.1016/j.nimb.2018.02.018.
  16. S. Holmstrom, et al., Test methodologies for determining high temperature material properties of thin walled tubes, Joint Res. Cent. (2017) 1-33, https://doi.org/10.2760/702821. JRC105586, n.d.
  17. J. Yoon, J. Kim, H. Kim, C. Won, Y. Song, S.H. Park, Calibration of hoop stress in ring tensile test with Zircaloy-4 tube, J. Mech. Sci. Technol. 31 (2017) 4183-4188, https://doi.org/10.1007/s12206-017-0815-8.
  18. F. Nagase, T. Sugiyama, T. Fuketa, Optimized ring tensile test method and hydrogen effect on mechanical properties of zircaloy cladding in hoop direction, J. Nucl. Sci. Technol. 46 (2009) 545-552, https://doi.org/10.1080/18811248.2007.9711560.
  19. M. Kiraly, D.M. Antok, L. Horvath, Z. Hozer, Evaluation of axial and tangential ultimate tensile strength of zirconium cladding tubes, Nucl. Eng. Technol. 50 (2018) 425-431, https://doi.org/10.1016/j.net.2018.01.002.
  20. F. Nindiyasari, P. Pierick, D. Boomstra, A. Pandit, Ring tensile test of reference zircaloy cladding tube as a proof of principle for hotcell setup, in: TopFuel-2018 Conf., Prague, Czech Repuublic, September 30 - October 04, 2018 (n.d).
  21. J. Desquines, D.A. Koss, A.T. Motta, B. Cazalis, M. Petit, The issue of stress state during mechanical tests to assess cladding performance during a reactivity-initiated accident (RIA), J. Nucl. Mater. 412 (2011) 250-267, https://doi.org/10.1016/j.jnucmat.2011.03.015.
  22. M.A. Martin-Rengel, F.J. Gomez Sanchez, J. Ruiz-Hervias, L. Caballero, A. Valiente, Revisiting the method to obtain the mechanical properties of hydrided fuel cladding in the hoop direction, J. Nucl. Mater. 429 (2012) 276-283, https://doi.org/10.1016/j.jnucmat.2012.06.003.
  23. M.A.M. Rengel, F.J.G. Sanchez, J.R. Hervias, L.C. Molano, Determination of the hoop fracture properties of unirradiated hydrogen-charged nuclear fuel cladding from ring compression tests, J. Nucl. Mater. 436 (2013) 123-129. http://oa.upm.es/29083/. https://doi.org/10.1016/j.jnucmat.2013.01.311
  24. V. Busser, M.C. Baietto-Dubourg, J. Desquines, C. Duriez, J.P. Mardon, Mechanical response of oxidized Zircaloy-4 cladding material submitted to a ring compression test, J. Nucl. Mater. 384 (2009) 87-95, https://doi.org/10.1016/j.jnucmat.2008.10.027.
  25. E. Eidelpes, L.F. Ibarra, R.A. Medina, Ring compression tests on un-irradiated nuclear fuel rod cladding considering fuel pellet support, J. Nucl. Mater. 510 (2018) 446-459, https://doi.org/10.1016/j.jnucmat.2018.08.009.
  26. F.J. Gomez, M.A. Martin Rengel, J. Ruiz-Hervias, M.A. Puerta, Study of the hoop fracture behaviour of nuclear fuel cladding from ring compression tests by means of non-linear optimization techniques, J. Nucl. Mater. 489 (2017) 150-157, https://doi.org/10.1016/j.jnucmat.2017.03.043.
  27. H. Jiang, J.A.J. Wang, Methodology for Mechanical Property Testing of Fuel Cladding Using an Expanding Plug Wedge Test, 2014, https://doi.org/10.1016/j.jnucmat.2013.11.026.
  28. M. Le Saux, C. Poussard, X. Averty, C. Sainte Catherine, S. Carassou, J. Besson, High temperature expansion due to compression test for the determination of a cladding material failure criterion under RIA loading conditions, in: Int. Top. Meet. Light Water React. Fuel Perform., San Francisco, USA, September 30 - October 3, 2007 (n.d).
  29. K.F. Nilsson, M. Negyesi, Z. Szaraz, I. Simonovski, An evaluation of the segmented expanding cone-mandrel test to assess hydride re-orientation and ductility reduction for Zircaloy-2 cladding tubes, J. Nucl. Mater. 466 (2015) 220-233, https://doi.org/10.1016/j.jnucmat.2015.07.019.
  30. K.F. Nilsson, O. Martin, C. Chenel-Ramos, J. Mendes, The segmented expanding cone-mandrel test revisited as material characterization and component test for fuel claddings, Nucl. Eng. Des. 241 (2011) 445-458, https://doi.org/10.1016/j.nucengdes.2010.10.026.
  31. S. Holmstrom, et al., Determination of high temperature material properties of 15-15Ti steel by small specimen techniques, Joint Res. Cent. (2017) 1-111, https://doi.org/10.2760/49859. JRC105589, n.d.
  32. E.N. Campitelli, P. Spatig, J. Bertsch, C. Hellwig, Assessment of irradiation-hardening on Eurofer97' and Zircaloy 2 with punch tests and finite-element modeling, Mater. Sci. Eng. A 400-401 (2005) 386-392, https://doi.org/10.1016/j.msea.2005.02.088.
  33. L. Yegorova, et al., Description of Test Procedures and Analytical Methods, Database on the Behavior of High Burnup Fuel Rods with Zr1%Nb Cladding and UO2 Fuel (VVER Type) under Reactivity Accident Conditions, 2, U.S. Nuclear Regulatory Commission, 1999, pp. 6.16-6.19. NUREG/IA-0156, n.d.
  34. V.I. Razumovskiy, A.Y. Lozovoi, I.M. Razumovskii, First-principles-aided design of a new Ni-base superalloy: influence of transition metal alloying elements on grain boundary and bulk cohesion, Acta Mater. 82 (2015) 369-377, https://doi.org/10.1016/j.actamat.2014.08.047.
  35. K. Pettersson, et al., Nuclear Fuel Behaviour in Loss-Of-Coolant Accident (LOCA) Conditions, Nuclear Energy Agency, 2009, pp. 43-47. NEA-6846, n.d.
  36. G.V. Kulakov, et al., Main properties of the Ni-Cr alloy 42KHNM and the prospects of its implementation as a construction material of VVER elements, in: 11th Conf. React. Mater. Sci., Dimitrovgrad, Russia, May 27-31, 2019 (n.d).
  37. J. Blaber, B. Adair, A. Antoniou, Ncorr : open-source 2D digital image correlation Matlab software, Exp. Mech. 55 (2015) 1105-1122, https://doi.org/10.1007/s11340-015-0009-1.
  38. M.C. Billone, Assessment of Current Test Methods for Post- LOCA Cladding Behavior, Argonne National Laboratory, 2012, pp. 3-7. NUREG/CR-7139, n.d.
  39. S. Shrivastava, C. Ghosh, J.J. Jonas, A comparison of the von Mises and Hencky equivalent strains for use in simple shear experiments, Philos. Mag. A 92 (2012) 779-786, https://doi.org/10.1080/14786435.2011.634848.
  40. I. Faridmehr, M.H. Osman, A. Bin Adnan, A.F. Nejad, R. Hodjati, Correlation between engineering stress-strain and true stress-strain curve, Am. J.Civ. Eng. Architect. 2 (2014) 53-59, https://doi.org/10.12691/ajcea-2-1-6.

Cited by

  1. Evaluation of the true-strength characteristics for isotropic materials using ring tensile test vol.53, pp.7, 2020, https://doi.org/10.1016/j.net.2021.01.033