DOI QR코드

DOI QR Code

A study on heat capacity of oxide and nitride nuclear fuels by using Einstein-Debye approximation

  • Eser, E. (Department of Physics, Ankara Haci Bayram Veli University) ;
  • Duyuran, B. (Department of Physics, Gazi University) ;
  • Bolukdemir, M.H. (Department of Physics, Gazi University) ;
  • Koc, H. (Department of Electrical and Electronics Engineering, Mus Alparslan University)
  • Received : 2019.07.07
  • Accepted : 2019.11.11
  • Published : 2020.06.25

Abstract

Knowledge on fuel enthalpy and its temperature derivative, the heat capacity, are important quantities in determination of fuel behavior in normal reactor operation and reactor transients. The aim of this study is to compare the heat capacity of oxide and nitrite fuels by using Einstein-Debye approximation. A simple analytical expression was performed to calculate the heat capacity of fuels. To test the validity and reliability, the calculated formulas were compared to published results for various nuclear fuels including UO2, ThO2, PuO2 and UN. Calculated formulas yielded results in consistent with literature.

Keywords

References

  1. S. Peng, G. Grimvall, Heat capacity of actinide dioxides, J. Nucl. Mater. 210 (1994) 115-122. https://doi.org/10.1016/0022-3115(94)90229-1
  2. C. Ronchi, Thermophysical properties affecting safety and performance of nuclear fuel, High Temp. 45 (2007) 552-571. https://doi.org/10.1134/S0018151X07040177
  3. Y. Yun, P.M. Oppeneer, First-principles design of next-generation nuclear fuels, MRS Bull. 36 (2011) 178-184. https://doi.org/10.1557/mrs.2011.34
  4. J.K. Fink, J. Nucl. Mater. 279 (2000) 1-18. https://doi.org/10.1016/S0022-3115(99)00273-1
  5. J.J. Carbajo, G.L. Yoder, S.G. Popov, V.K. Ivanov, J. Nucl. Mater. 299 (2001) 181-198. https://doi.org/10.1016/S0022-3115(01)00692-4
  6. V.G. Baranov, Yu N. Devyatko, A.V. Tenishev, A.V. Khlunov, O.V. Khomyakov, J. Nucl. Mater. 434 (2013) 248-251. https://doi.org/10.1016/j.jnucmat.2012.10.047
  7. E. Eser, H. Koc, M. Gokbulut, G. Gursoy, Nucl. Eng. Technol. 46 (2014) 863. https://doi.org/10.5516/NET.07.2014.024
  8. H. Koc, E. Eser, B.A. Mamedov, Nucl. Eng. Des. 241 (2011) 3678-3682. https://doi.org/10.1016/j.nucengdes.2011.07.020
  9. K. Kurosaki, K. Yamada, M. Uno, S. Yamanaka, K. Yamamoto, T. Namekowa, J. Nucl. Mater. 294 (2001) 160-167. https://doi.org/10.1016/S0022-3115(01)00451-2
  10. B.A. Mamedov, Nucl. Eng. Des. 276 (2014) (2014) 124-127. https://doi.org/10.1016/j.nucengdes.2014.05.038
  11. V. Sobolev, J. Nucl. Mater. 344 (2005) 198-205. https://doi.org/10.1016/j.jnucmat.2005.04.042
  12. V. Sobolev, J. Nucl. Mater. 389 (2009) 45-51. https://doi.org/10.1016/j.jnucmat.2009.01.005
  13. V. Sobolev, S. Lemehov, J. Nucl. Mater. 352 (2006) 300-308. https://doi.org/10.1016/j.jnucmat.2006.02.077
  14. D. Terentyev, Comput. Mater. Sci. 40 (2007) 319-326. https://doi.org/10.1016/j.commatsci.2007.01.002
  15. K. Bakker, E.H.P. Cordfunke, R.J.M. Konings, R.P.C. Schram, J. Nucl. Mater. 250 (1997) 1-12. https://doi.org/10.1016/S0022-3115(97)00241-9
  16. S. Minamoto, M. Kato, K. Konashi, Y. Kawazoe, J. Nucl. Mater. 385 (2009) 18-20. https://doi.org/10.1016/j.jnucmat.2008.10.024
  17. Y. Takahashi, M. Murabayashi, Y. Akimoto, T. Mukaibo, J. Nucl. Mater. 38 (1971) 303-308. https://doi.org/10.1016/0022-3115(71)90059-6
  18. E.F. Westrum Jr., C.M. Barber, J. Chem. Phys. 45 (1966) 635. https://doi.org/10.1063/1.1727621
  19. The SGTE Pure Substance and Solution Databases, GTT-DATA SERVICES, 1996.
  20. I. Barin, Thermochemical Data of Pure Substances, third ed., vol. II, VCH, Weinheim, 1995, 1236 and 1657.
  21. R. Agarwal, R. Prasad, V. Venugopal, J. Nucl. Mater. 322 (2003) 98-110. https://doi.org/10.1016/S0022-3115(03)00279-4
  22. J.C. Southard, J. Am. Chem. Soc. 63 (1941) 3142. https://doi.org/10.1021/ja01856a072
  23. Japan Thermal Measurement Society, Thermodynamics Data Base 2 for Personal Computer MALT-2, 1992.
  24. J.P. Hiernaut, G.J. Hyland, C. Ronchi, Int. J. Thermophys. 14 (1993) 259-283. https://doi.org/10.1007/BF00507813
  25. D.R. Fredrickson, M.G. Chasanov, J. Chem. Thermodyn. 2 (1970) 623. https://doi.org/10.1016/0021-9614(70)90037-6
  26. F.L. Oetting, J. Nucl. Mater. 105 (1982) 257-261. https://doi.org/10.1016/0022-3115(82)90382-8
  27. O.L. Kruger, H.J. Savage, J. Chem. Phys. 49 (1968) 4540. https://doi.org/10.1063/1.1669909
  28. J.K. Fink, Int. J. Thermophys. 165 (1982) 3.
  29. D.T. Hagrman, in: SCDAP/RELAP5/MOD3.1 Code Manual, Volume IV: MATPRO - A Library of Materials Properties for Light-Water-Reactor Accident Analysis, 1993. NUREG/CR-6150, EGG-2720. vol: IV.
  30. F.L. Oetting, J.M. Leitnaker, J. Chem. Thermodyn. 4 (1972) 199-211. https://doi.org/10.1016/0021-9614(72)90057-2
  31. Y. Suzuki, Y. Arai, J. Alloy. Comp. 271-273 (1998) 577-582. https://doi.org/10.1016/S0925-8388(98)00160-1
  32. C. Degueldre, P. Tissot, H. Lartigue, M. Pouchon, Thermochim. Acta 403 (2003) 267-273. https://doi.org/10.1016/S0040-6031(03)00060-1
  33. I.S. Golovnin, Properties of plutonium dioxide as nuclear fuel, At. Energ. 89 (2000) 117. https://doi.org/10.1023/A:1011395307936
  34. S.L. Hayes, J.K. Thomas, K.L. Peddicord, J. Nucl. Mater. 171 (1990) 300-318. https://doi.org/10.1016/0022-3115(90)90377-Y
  35. A.T. Nelson, D.R. Rittman, J.T. White, J.T. Dunwoody, M. Kato, K.J. McClellan, J. Am. Ceram. Soc. 97 (2014) 3652-3659. https://doi.org/10.1111/jace.13170
  36. M. Chollet, R.C. Belin, J.C. Richaudand, F. Adenot, Procedia Chem. 7 (2012) 466-471. https://doi.org/10.1016/j.proche.2012.10.071
  37. O. Benes, P. Gotcu-Freis, F. Schworer, R.J.M. Konings, Th Fanghanel, J. Chem. Thermodyn. 43 (2011) 651-655. https://doi.org/10.1016/j.jct.2010.11.010
  38. T. Yamashita, N. Nitani, T. Tsuji, T. Kato, J. Nucl. Mater. 247 (1997) 90. https://doi.org/10.1016/S0022-3115(97)00031-7
  39. H. Serizawa, Y. Araiand, K. Nakajima, J. Chem. Thermodyn. 33 (2001) 615-628. https://doi.org/10.1006/jcht.2000.0775
  40. T. Nishi, A. Itoh, M. Takano, M. Numata, M. Akabori, Y. Arai, K. Minato, J. Nucl. Mater. 376 (2008) 78. https://doi.org/10.1016/j.jnucmat.2008.01.018
  41. B.M. Askerov, M. Cankurtaran, Phys. Status Solidi B 185 (1994) 341. https://doi.org/10.1002/pssb.2221850204
  42. W. Parker, R. Jenkins, C. Butler, G. Abott, J. Appl. Phys. 32 (1961) 1679. https://doi.org/10.1063/1.1728417
  43. D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, Report No. TID-26711-P1, Technical Information Center, Office of Public Affairs, Energy Research and Development Administration, Oak Ridge, TN, USA, 1976. http://plutonium-erl.actx.edu/fanrfe.html.
  44. A. Einstein, Ann. Phys. 34 (1911) 170, and errata 590. https://doi.org/10.1002/andp.19113390110
  45. P. Debye, Ann. Phys. 39 (1912) 789. https://doi.org/10.1002/andp.19123441404
  46. S.W. Kieffer, Rev. Geophys. Space Phys. 17 (1979) 1-19. https://doi.org/10.1029/RG017i001p00001
  47. S.W. Kieffer, Rev. Geophys. Space Phys. 17 (1979) 20-34. https://doi.org/10.1029/RG017i001p00020
  48. S.W. Kieffer, Rev. Geophys. Space Phys. 17 (1979) 35-59. https://doi.org/10.1029/RG017i001p00035
  49. M.H.G. Jacobs, R. Schmid-Fetzer, A.P. Van den Berg, Phys. Chem. Miner. 20 (2013) 207-227.
  50. T. Balcerzak, K. Szalowski, M. Jascur, J. Phys. Condens. Matter 22 (2010) 425401. https://doi.org/10.1088/0953-8984/22/42/425401
  51. G. Ottonello, M. Vetuschi Zuccolini, D. Belmonte, J. Chem. Phys. 133 (2010) 104508. https://doi.org/10.1063/1.3483195
  52. L.D. Landau, E.M. Lifshits, Statistical Physics, Pergamon Press, London, 1980.
  53. M. Cankurtaran, B.M. Askerov, Phys. Status Solidi B 194 (1996) 499. https://doi.org/10.1002/pssb.2221940207
  54. B.A. Mamedov, E. Eser, H. Koc, I.M. Askerov, Int. J. Thermophys. 30 (2009) 1048-1054. https://doi.org/10.1007/s10765-009-0601-7
  55. M. Kato, et al., Thermal expansion measurement (U,Pu)O2-x in oxygen partial pressure controlled atmosphere, J. Nucl. Mater. 451 (2014) 78-81. https://doi.org/10.1016/j.jnucmat.2014.03.021
  56. B.T.M. Willis, Neutron diffraction studies of the actinide oxides II. Thermal motions of the atoms in uranium dioxide and thorium dioxide between room temperature and $1100^{\circ}C$, Proc. R. Soc. Lond. Ser A Math. Phys. Sci. 274 (1963) 134. https://doi.org/10.1098/rspa.1963.0118
  57. R.E. Latta, R.E. Fryxell, Determination of solidus-liquidus temperatures in the UO2+ x system (-0.50< x< 0.20), J. Nucl. Mater. 35 (1970) 195. https://doi.org/10.1016/0022-3115(70)90100-5
  58. D. Das (auth), Dasarathi Das, S.R. Bharadwaj, Thoria-based Nuclear Fuels: Thermophysical and Thermodynamic Properties, Fabrication, Reprocessing, and Waste Management, Springer-Verlag, London, 2013. ISBN: 978-1-4471-5588-1.
  59. E.P. Loeven, P.E. McDonald, J. Hohorst, Recommended thorium materials properties to FRACON-3, in: Proc. Int. Top. Meet. Top Fuel- Apr 10-13, ANS, USA, 2000.
  60. J.R.B. Roof, An experimental determination of the characteristic temperature for Pu02, J. Nucl. Mater. 2 (1960) 39. https://doi.org/10.1016/0022-3115(60)90022-2
  61. W.M. Olson, R.N.R. Mulford, The decomposition pressure and melting point of uranium Mononitride, J. Phys. Chem. 67 (1963) 952-954. https://doi.org/10.1021/j100798a525

Cited by

  1. First principles study on phonon dispersion, mechanical and thermodynamic properties of ThP vol.26, 2021, https://doi.org/10.1016/j.mtcomm.2020.101951
  2. Theoretical study of specific heat capacity of thermoelectric half-Heusler XNiSb (X = Sc, Tm) compounds vol.101, pp.4, 2021, https://doi.org/10.1080/09500839.2021.1874068
  3. Low-temperature heat capacities for EMoO4 (E=Mg, Sr, Ba) substances formed in nuclear fuel waste glasses vol.143, 2022, https://doi.org/10.1016/j.pnucene.2021.104054
  4. Study on specific heat capacity and thermal conductivity of uranium nitride vol.86, pp.6, 2020, https://doi.org/10.1515/kern-2021-1010