DOI QR코드

DOI QR Code

Performance evaluation of the Floating Absorber for Safety at Transient (FAST) in the innovative Sodium-cooled Fast Reactor (iSFR) under a single control rod withdrawal accident

  • Received : 2019.06.05
  • Accepted : 2019.11.09
  • Published : 2020.06.25

Abstract

The Floating Absorber for Safety at Transient (FAST) is a safety device used in the innovative Sodium-cooled Fast Reactor (iSFR). The FAST insert negative reactivity under transient or accident conditions. However, behavior of the FAST is still unclear under transient conditions. Therefore, the existing Floating Absorber for Safety at Transient Analysis Code (FASTAC) is improved to analyze the FAST movement by considering the reactivity and temperature distribution within the reactor core. The current FAST system is simulated under a single control rod withdrawal accident condition. In this investigation, the reactor thermal power does not return to its initial thermal power even if the FAST inserts negative reactivity. Only a 9 K of coolant temperature margin, in the hottest fuel assembly at EOL, can lead to unnecessary insertion of the negative reactivity. On the other hand, the FASTs cannot contribute to controlling the reactivity when normalized radial power is less than 0.889 at BOL and 0.972 at EOL. These simulation results suggest that the current FAST design needs to be optimized depending on its installed location. Meanwhile, the FAST system keeps the fuel, cladding and coolant temperatures below their limit temperatures with given conditions.

Keywords

References

  1. D. Hartanto, I. Kim, C. Kim, Y. Kim, An LEU-loaded long-life innovative sodium-cooled fast reactor (iSFR) with novel and passive safety devices, Ann. Nucl. Energy 95 (2016) 86-101, https://doi.org/10.1016/j.anucene.2016.04.051.
  2. W.S. Yang, Fast reactor physics and computational methods, Nucl. Eng. Technol. 44 (2012) 177-198, https://doi.org/10.5516/NET.01.2012.504.
  3. D.G. Cacuci, Handbook of Nuclear Engineering, Springer Science & Business Media, New York, 2010.
  4. B. Merk, Fine distributed moderating material with improved thermal stability applied to enhance the feedback effects in SFR cores, Sci. Technol. Nucl. Install. 2013 (2013) 1-11, https://doi.org/10.1155/2013/217548.
  5. S.J. Kim, N.Z. Cho, Y.J. Kim, A pan-shape transuranic burner core with a low sodium void worth, Ann. Nucl. Energy 27 (2000) 435-448, https://doi.org/10.1016/S0306-4549(99)00101-2.
  6. C. Sciora, P., D. Blanchet, L. Buiron, B. Fontaine, M. Vanier, F. Varaine, Venard, Low void effect core design applied on 2400 MWth SFR reactor, in: International Congress on Advanced Nuclear Power Plants, Nice, France, 2011. May 2-5.
  7. M.F. Khalil, S.Z. Kassab, I.G. Adam, M. Samaha, Laminar flow in concentric annulus with a moving core, in: International Water Technology Conference, 2008. Alexandria, Egypt, March 27-30.
  8. I. Kim, T.F. Irvine, N.A. Park, Experimental study of the velocity field around a falling needle viscometer, Rev. Sci. Instrum. 65 (1994) 224-228, https:// doi.org/10.1063/1.1144789.
  9. E.G. Wehbeh, T.J. Ui, R.G. Hussey, End effects for the falling cylinder viscometer, Phys. Fluids A Fluid Dyn. 5 (2002) 25-33, https://doi.org/10.1063/1.858781.
  10. M.C.S. Chen, J.A. Lescarboura, G.W. Swift, The effect of eccentricity on the terminal velocity of the cylinder in a falling cylinder viscometer, AIChE J. 14 (1968) 123-127, https://doi.org/10.1002/aic.690140122.
  11. S. Lee, Y.H. Jeong, Floating absorber for safety at transient analysis code ( FASTAC ): verification and validation study, in: International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Opereration and Safety, 2018. Qingdao, China, October 14-18.
  12. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, first ed., CRC Press, Boca Raton, 1980.
  13. F.M. White, Fluid Mechanics, seventh ed., McGraw-Hill, New York, 2011.
  14. G. Biswas, M. Breuer, F. Durst, Backward-facing step flows for various expansion ratios at low and moderate Reynolds numbers, J. Fluids Eng. 126 (2004) 362-374, https://doi.org/10.1115/1.1760532.
  15. R.H. Anderson, D. Tannehill, J.C. Pletcher, Computational Fluid Mechanics and Heat Transfer, third ed., CRC Press, Boca Raton, 2016 https://doi.org/10.1201/b12884.
  16. A.S. Incropera, F.P., D.P. DeWitt, T.L. Bergman, Lavine, Foundations of Heat Transfer : International Student Version, sixth ed., John Wiley & Sons Ltd, 2012.
  17. H. Kazeminejad, Thermal-hydraulic modeling of reactivity insertion in a research reactor, Ann. Nucl. Energy 45 (2012) 59-67, https://doi.org/10.1016/ j.anucene.2012.02.017.
  18. J.R. Lamarsh, A.J. Baratta, Introduction to Nuclear Engineering, third ed., Prentice hall, Upper Saddle River, New Jersey, 2001.
  19. C. Housiadas, Lumped parameters analysis of coupled kinetics and thermal-hydraulics for small reactors, Ann. Nucl. Energy 29 (2002) 1315-1325, https://doi.org/10.1016/S0306-4549(01)00107-4.
  20. L. Leibowitz, R.A. Blomquist, Thermal conductivity and thermal expansion of stainless steels D9 and HT9, Int. J. Thermophys. 9 (1988) 873-883, https:// doi.org/10.1007/BF00503252.
  21. Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemens, Thermophysical Properties of Matter - the TPRC Data Series. Volume 1. Thermal Conductivity - Metallic Elements and Alloys, Plenum Press, New York, 1970.
  22. K.L. Lee, K.S. Ha, J.H. Jeong, C.W. Choi, T. Jeong, S.J. Ahn, S.W. Lee, W.P. Chang, S.H. Kang, J. Yoo, A preliminary safety analysis for the prototype gen IV sodium-cooled fast reactor, Nucl. Eng. Technol. 48 (2016) 1071-1082, https://doi.org/10.1016/j.net.2016.08.002.
  23. M.S. Dias, J.R.L.D, Mattos, Uranium-zirconium based alloys part I: reference points for thermophysical properties, in: International Nuclear Atlantic Conference, (Sao)
  24. Y. Chen, Irradiation effects of HT-9 martensitic steel, Nucl. Eng. Technol. 45 (2013) 311-322, https://doi.org/10.5516/NET.07.2013.706.
  25. R. Klueh, D. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM International, West Conshohocken, 2011.