DOI QR코드

DOI QR Code

A Study on the Reaction Characteristics of Carbon Dioxide Methanation Catalyst for Full-Scale Process Application

이산화탄소 메탄화 공정 적용을 위한 Ni/CeO2-X 촉매의 반응 특성 연구

  • Lee, Ye Hwan (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 이예환 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2020.05.15
  • Accepted : 2020.05.22
  • Published : 2020.06.10

Abstract

The reaction characteristics of Ni/CeO2-X which is highly efficient at a low temperature was investigated for an application to carbon dioxide methanation process. The CeO2-X support was obtained by the heat treatment of Ce(NO3)3 at 400 ℃ and the catalyst was prepared by impregnation process. The operating parameters of the experiment were the internal pressure of the reactor, the composition of oxygen, methane, and hydrogen sulfide in the inlet gas and the reaction temperature. When Ni/CeO2-X was used for the carbon dioxide methanation reaction, the CO2 conversion rate increased by more than 25% as the pressure increased from 1 to 3 bar. The increase was large at a low reaction temperature. When both oxygen and methane were in the inlet gas, the CO2 conversion rate of the catalyst decreased by up to 16 and 4%, respectively. As the concentration of oxygen and methane increased, the reduction rate of the CO2 conversion rate tended to increase. In addition, the hydrogen sulfide in the inlet gas reduced the CO2 conversion rate by up to 7% and caused catalyst deactivation. The results of this study will be useful as basic data for the carbon dioxide methanation process.

이산화탄소 메탄화 공정 적용을 위해 저온에서 우수한 활성을 나타내는 Ni/CeO2-X의 반응 특성을 조사하였다. 지지체인 CeO2-X는 Ce(NO3)3를 400 ℃에서 열처리하여 획득하였으며, 촉매는 함침법으로 제조되었다. 실험의 운전 변수로써 반응기 내부 압력, 유입가스 중 산소, 메탄, 황화수소의 조성 및 반응 온도에 대하여 수행하였다. Ni/CeO2-X를 이용한 이산화탄소 메탄화 반응에서 압력이 1 bar에서 3 bar로 증가함에 따라 CO2 전환율은 25% 이상 증가하였으며, 낮은 반응 온도에서 증가폭이 크게 나타났다. 유입가스 중 산소와 메탄은 촉매의 CO2 전환율을 최대 16, 4%씩 감소시켰으며, 산소와 메탄의 농도가 높아질수록 CO2 전환율의 감소율이 증가하는 경향을 나타내었다. 또한 황화수소는 촉매의 CO2 전환율을 최대 7% 감소시켰으며 촉매의 비활성화를 야기하였다. 본 연구의 결과들은 이산화탄소의 메탄화 공정 기초 자료로 유용하게 사용될 수 있을 것이다.

Keywords

References

  1. S. C. Chae, Y. N. Jang, and K. W. Ryu, Mineral carbonation as a sequestration method of $CO_2$, J. Geol. Soc. Korea, 45, 527-555 (2009).
  2. J. Lee, D. Moon, and S. Chang, Manufacturing optimization of Ni based disk type catalyst for $CO_2$ methanation, J. Environ. Sci. Int., 28, 65-73 (2019). https://doi.org/10.5322/jesi.2019.28.1.65
  3. K. Hashimoto, Global Temperature and Atmospheric Carbon Dioxide Concentration. In: K. Hashimoto, (eds.). SpringerBriefs in Energy, 5-17, Springer Singapore, Singapore (2019).
  4. M. A. Morales Mora, C. Pretelin Vergara, M. A. Leiva, S. A. Martinez Delgadillo, and E. R. Rosa-Dominguez, Life cycle assessment of carbon capture and utilization from ammonia process in Mexico, J. Environ. Manage., 183, 998-1008 (2016). https://doi.org/10.1016/j.jenvman.2016.09.048
  5. L. Jurgensen, E. A. Ehimen, J. Born, and J. B. Holm-Nielsen, Dynamic biogas upgrading based on Sabatier process: Thermodynamic and dynamic process simulation, Bioresour. Technol., 178, 323-329 (2015). https://doi.org/10.1016/j.biortech.2014.10.069
  6. K. Lee, Y. H. Cho, S. Kim, A. Lee, and J. Y. Choi, Trends of power to gas technology of convertgence energy based on photovoltaic system, Mag. Korean Sol. Energy Soc., 15, 2-8 (2017).
  7. X. Guo, A. Traitangwong, M. Hu, C. Zuo. V. Meeyoo, Z. Peng, and C. Li, Carbon dioxide methanation over Nickel-based catalysts supported on various mesoporous material, Energ. Fuel, 32, 3681-3689 (2018). https://doi.org/10.1021/acs.energyfuels.7b03826
  8. S. Sharma, Z. Hu, P. Zhang, E. W. McFarland, and H. Metiu, $CO_2$ methanation on Ru-doped ceria, J. Catal., 278, 297-309 (2011). https://doi.org/10.1016/j.jcat.2010.12.015
  9. Z. Baysal and S. Kureti, $CO_2$ methanation on Mg-promoted Fe catalysts, Appl. Catal. B: Environ., 262, 118300 (2020). https://doi.org/10.1016/j.apcatb.2019.118300
  10. K. Wang, R. Jiang, T. Peng, X. Chen, W. Dai, and X. Fu, Modeling the effect of Cu doped $TiO_2$ with carbon dots on $CO_2$ methanation by $H_2O$ in a photo-thermal system, Appl. Catal. B: Environ., 256, 117780 (2019). https://doi.org/10.1016/j.apcatb.2019.117780
  11. G. A. Mills and F. W. Steffgen, Catalytic methanation, Catal. Rev., 8, 159-210 (1974). https://doi.org/10.1080/01614947408071860
  12. M. Frey, T. Romero, A. Roger, and D. Edouard, Open cell foam catalysts for $CO_2$ methanation: Presentation of coating procedures and in situ exothermicity reaction study by infrared thermography, Catal. Today, 273, 83-90 (2016). https://doi.org/10.1016/j.cattod.2016.03.016
  13. D. J. Goodman, Methanation of Carbon Dioxide, Master's Dissertation, University of California, Los Angeles (2013).
  14. W. Ahn, H. Lee, Y. Lee, S. Son, W. Jeong, M. Chung, K. Park, and H. Ahn, Study on conversion carbon dioxide to methyl alcohol over titanium chip plate supported CuO and ZnO catalysts, J. Korean Soc. Environ. Technol., 15, 197-203 (2014).
  15. J. Kim, J. Ryu, S. Kang, Y. Yoo, J. Kim, D. Go, M. Jung, and J. Lee, Catalytic performance for the production of $CH_4$-rich synthetic natural gas (SNG) on the commercial catalyst; Influence of operating conditions, Clean Technol., 24, 99-104 (2018). https://doi.org/10.7464/KSCT.2018.24.2.099
  16. F. Ocampo, B. Louis, A. Kiennemann, and A. C. Roger, $CO_2$ methanation over Ni-Ceria-Zirconia catalysts: Effect of preparation and operating condition, Mater. Sci. Eng., 19, 012007 (2011).
  17. J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, and F. Su, A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, RSC Adv., 2, 2358-2368 (2012). https://doi.org/10.1039/c2ra00632d
  18. S. Rasi, J. Lantela, and J. Rintala, Upgrading landfill gas using a high pressure water absorption process, Fuel, 115, 539-543 (2014). https://doi.org/10.1016/j.fuel.2013.07.082
  19. Y. G. Park, Study of optimal operation conditions in the membrane separation process using anaerobic digestion gas of food waste, J. Korea Soc. Waste Manag., 36, 717-730 (2019). https://doi.org/10.9786/kswm.2019.36.8.717
  20. G. Yeom, M. Seo, and Y. Baek, A study on the $CO_2$ methanation in power to gas (P2G) over Ni-catalysts, Trans. Korean Hydrog. New Energy Soc., 30, 14-20 (2019). https://doi.org/10.7316/KHNES.2019.30.1.14
  21. W. A. W. A. Bakar, R. Ali, and S. Toemen, Catalytic methanation reaction over supported nickel-rhodium oxide for purification of simulated natural gas, J. Nat. Gas Chem., 20, 585-594 (2011). https://doi.org/10.1016/S1003-9953(10)60236-8