DOI QR코드

DOI QR Code

Assessment of Smoke Risk of Combustible Materials in Fire

화재 시 가연성 물질의 연기 위험성 평가

  • Chung, Yeong-Jin (Department of Fire Protection Engineering, Kangwon National University) ;
  • Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University)
  • 정영진 (강원대학교 소방방재공학과) ;
  • 진의 (강원대학교 소방방재연구센터)
  • Received : 2020.03.19
  • Accepted : 2020.04.10
  • Published : 2020.06.10

Abstract

The smoke hazard assessment of building materials focusing on smoke performance index-II (SPI-II) and smoke growth index-II (SGI-II) was investigated. The test species used were Japanese cedar, spruce, lauan, and red pine. The smoke characteristics of wood specimen were investigated using a cone calorimeter (ISO 5660-1). SPI-II was measured after the combustion reaction increased by 1.31~2.15 times based on red pine. The fire risk by SPI-II increased in the order of spruce, lauan, Japanese ceda, and red pine. SGI-II increased by 1.18~2.55 times compared to that of Japnese ceda. The fire risk caused by SGI-II increased in the order of Japanese ceda, spruce, lauan, and red pine. COmean concentrations were ranged from 58 to 133 ppm, which was higher than permissible exposure limits of the occupational safety and health administration (OSHA), 50 ppm. Therefore, woods such as red pine containing various volatile organic substances, were considered to be highly smoke hazardous due to low SPI-II and high SGI-II.

본 연구는 건자재용 목재의 연기 유해성평가에 대하여 연기성능지수-II (SPI-II), 연기성장지수-II (SGI-II)를 중심으로 조사하였다. 시험편은 삼나무, 가문비나무, 나왕, 적송을 사용하였다. 연기 특성은 시험편 목재에 대하여 콘칼로리미터(ISO 5660-1) 장비를 이용하여 조사하였다. 연소반응 후 측정된 연기성능지수-II는 적송을 기준으로 1.31~2.15배 증가하였다. 연기성능지수-II에 의한 화재위험성은 가문비나무, 나왕, 삼나무, 적송의 순서로 증가하였다. 연기성장지수-II는 삼나무를 기준으로 1.18~2.55배 증가하였다. 연기성장지수-II에 의한 화재위험성은 삼나무, 가문비나무, 나왕, 적송의 순서로 높아졌다. CO 평균농도는 59~133 ppm이었으며 이 결과는 미국직업안전위생관리국(occupational safety and health administration, OSHA)의 허용기준(permissible exposure limits, PEL)인 50 ppm 보다 높게 나타났다. 결론적으로 적송과 같이 휘발성 유기물질을 다랑 함유한 목재는 연기성능지수-II가 낮고, 연기성장지수-II가 높으므로 화재로 인한 연기유해성이 높은 것으로 이해된다.

Keywords

References

  1. T. S. Kim, Y. S. Kim, C. K. Yoon, and Y. J. Chung, The Guide of Fire Investigation, 77-98, Kimoondang, Seoul, Korea (2009).
  2. H. J. Park, H. Kim, and D. M. Ha, Predicting of fire characteristics of flame retardant treated Douglas fir using an integral model, J. KOSOS., 20, 98-104 (2005).
  3. O. Grexa, Flame retardant treated wood products, The Proceedings of Wood & Fire Safety(part one), 101-110 (2000).
  4. M. J. Spearpoint and J. G. Quintiere, Predicting the piloted ignition of wood in the cone calorimeter using an integral model - effect of species, grain orientation and heat flux, Fire Safety J., 36, 391-415 (2001). https://doi.org/10.1016/S0379-7112(00)00055-2
  5. N. Boonmee and J. G. Quintiere, Glowing ignition of wood: The onset of surface combustion, Proceedings of the Combustion Institute, 30, 2303-2310 (2005). https://doi.org/10.1016/j.proci.2004.07.022
  6. R. H. White and M. A. Dietenberger, Wood Handbook: Wood as an Engineering Material, Ch.17: Fire safety, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA (1999).
  7. G. Shen, S. Tao, S. Wei, Y. Zhang, R. Wang, B. Wang, W. Li, H. Shen, Y. Huang, Y. Chen, H. Chen, Y. Yang, W. Wang, X. Wang, W. Liu, and S. L. Simonich, Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in Rural China, Environ. Sci. Technol., 46, 8123-8130 (2012). https://doi.org/10.1021/es301146v
  8. J. Ding, J. Zhong, Y. Yang, B. Li, G. Shen, Y. Su, C. Wang, W. Li, H. Shen, B. Wang, R. Wang, Y. Huang, Y. Zhang, H. Cao, Y. Zhu, S. L. Simonich, and S. Tao, Occurrence and exposure to polycyclic aromatic hydrocarbons and their derivatives in a rural chinese home through biomass fuelled cooking, Environ. Pollution, 169, 160-166 (2012). https://doi.org/10.1016/j.envpol.2011.10.008
  9. G. Shen, S. Tao, S. Wei, Y. Chen Y, Y. Zhang, H. Shen, Y. Huang, D. Zhu, C. Yuan, H. Wang, Y. Wang, L. Pei, Y. Liao, Y. Duan, B. Wang, R. Wang, Y. Lv, W. Li, X. Wang, and X. Zheng, Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy-polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in Rural Shanxi, China, Environ. Sci. Technol., 47, 2998-3005 (2013). https://doi.org/10.1021/es304599g
  10. ISO 5660-1, Reaction-to-fire tests-heat release, smoke production and mass loss rate-part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Genever, Switzerland (2015).
  11. B. Tawiah, B. Yu, R. K. K. Yuen, Y. Hu, R. Wei, J. H. Xin, and B. Fei, Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene oxide/poly(lactic acid) nanocomposites, Carbon, 150, 8-20 (2019). https://doi.org/10.1016/j.carbon.2019.05.002
  12. L. Yan, Z. Xu, and N. Deng, Effects of polyethylene glycol borate on the flame retardancy and smoke suppression properties of transparent fire-retardant coatings applied on wood substrates, Prog. Org., 135, 123-134 (2019).
  13. T. Fateh, T. Rogaume, J. Luche, F. Richard, and F. Jabou, Characterization of the thermal decomposition of two kinds of plywood with a cone calorimeter-FTIR apparatus, J. Anal. Appl. Pyrolysis, 107, 87-100 (2014). https://doi.org/10.1016/j.jaap.2014.02.008
  14. Y. J. Chung and E. Jin, Smoke generation by burning test of cypress plates treated with boron compounds, Appl. Chem. Eng., 29, 670-676 (2018). https://doi.org/10.14478/ACE.2018.1076
  15. W. T. Simpso, Drying and control of moisture content and dimensional changes, Chap. 12, Wood Handbook-Wood as an Engineering Material, 1-21, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA (1987).
  16. T. Y. Yoo, J. S. You, and Y. J. Chung, Combustion properties of construction lumber used in every life, Fire Sci. Eng., 31, 37-43 (2017). https://doi.org/10.7731/KIFSE.2017.31.5.037
  17. Y. J. Chung, Combustion characteristics of the Quercus varialis and Zelkova serrata dried at room temperature, J. Korean Forest Soc., 99, 96-101 (2010).
  18. J. G. Quintire, Principles of fire behavior, Chap. 5, Cengage Learning, Delmar, USA (1998).
  19. Y. J. Chung, Comparison of combustion properties of native wood species used for fire pots in Korea, J. Ind. Eng. Chem., 16, 15-19 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  20. B. Lee, H. Kim, S. Kim, H. Kim, B. Lee, Y. Deng, Q. Feng, and J. Luo, Evaluating the flammability of wood-based panels and gypsum particleboard using a cone calorimeter, Const. Build. Mater., 25, 7, 3044-3050 (2011).
  21. F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal analysis in polymer flammability, Chap. 8. In : Thermal Characterization of Polymeric Materials, Academic press, New York, USA (1981).
  22. Q. Wang, J. Li, and J. Winandy, Chemical mechanism of fire retardance of boric acid on wood, Wood Sci. Technol., 38, 375-389 (2004). https://doi.org/10.1007/s00226-004-0246-4
  23. M. Risholm-Sundman, M. Lundgren, E. Vestine, and P. Herder, Emission of acetic acid and other volatile organic compounds from different species of solid wood, Holz Roh. Werkst., 56, 125-129 (1998). https://doi.org/10.1007/s001070050282
  24. B. Wang, Q. Tang, N. Hong, L. Song, L. Wang, Y. Shi, and Y. Hu, Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene vinyl acetate copolymer/microencapsulated ammonium polyphosphate/polyamide-6 blends, ACS Appl. Mater. Interfaces, 3, 3754-3761 (2011). https://doi.org/10.1021/am200940z
  25. C. Jiao, X. Chen, and J. Zhang, Synergistic effects of $Fe_2O_3$ with layered double hydroxides in EVA/LDH composites, J. Fire Sci., 27, 465-479 (2009). https://doi.org/10.1177/0734904109102033
  26. OHSA, Carbon monoxide, OSHA fact sheet, United States National Institute for Occupational Safety and Health, September 14, USA (2009).
  27. OHSA, Carbon Dioxide, Toxicological review of selected chemicals, final rule on air comments project, OHSA's Comments, January 19, USA (1989).
  28. MSHA, Carbon Monoxide, MSHA's Occupational Illness and Injury Prevention Program Topic, U. S. Department of Labor, USA (2015).

Cited by

  1. 화재 시 연소성 물질에 대한 화재 위험성 등급 평가 vol.32, pp.1, 2021, https://doi.org/10.14478/ace.2020.1103
  2. 화재로부터 연소성 물질에 대한 연기위험성 및 연기위험성 등급 평가 vol.32, pp.2, 2020, https://doi.org/10.14478/ace.2021.1016