참고문헌
- Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
- Abdollahian, M., Ghorbanpour Arani, A., Mosallaie Barzoki, A. A., Kolahchi, R. and Loghman, A. (2013), "Non-local wave propagation in embedded armchair TWBNNTs conveying viscous fluid using DQM", Physica B: Condensed Matter, 418, 1-15. https://doi.org/10.1016/j.physb.2013.02.037.
- Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
- Agrawal, R. and Espinosa, H.D. (2011), "Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation", Nano letters, 11(2), 786-790. https://doi.org/10.1021/nl104004d
- Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct, 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963.
- Aissani, K., Bouiadjra, M. B., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., 55(4), 743-763. https://doi.org/10.12989/sem.2015.55.4.743.
- Akbas, S. D. (2018), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.
- Akgoz, B. and Civalek, O. (2011), "Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories", J. Comput. Theroetical Nanosci., 8, 1821-1827. https://doi.org/10.1166/jctn.2011.1888.
- Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195.
- Akgoz, B. and Civalek O. (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.
- Al-Basyouni, K. S., Tounsi, A. and Mahmoud, S. R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct, 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070.
- Ansari, R., Norouzzadeh, A., Gholami, R., Faghih Shojaei, M. and Hosseinzadeh, M. (2014), "Size-dependent nonlinear vibration and instability of embedded fluid-conveying SWBNNTs in thermal environment", Physica E Low Dimensional Syst. Nanostruct., 61, 148-157. https://doi.org/10.1016/j.physe.2014.04.004.
- Ansari, R., Rouhi, S., Mirnezhad, M. and Aryayi, M. (2015), "Stability characteristics of single-walled boron nitride nanotubes", Arch. Civil Mech. Eng., 15(1), 162-170. https://doi.org/10.1016/j.acme.2014.01.008.
- Ansari, R., Oskouie, M. F., Gholami, R. and Sadeghi, F. (2016), "Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory", Compos. Part B Eng., 89, 316-327. https://doi.org/10.1016/j.compositesb.2015.12.029.
- Aphale, S., Fleming, A.J. and Moheimani, S.O.R. (2007), "High speed nano-scale positioning using a piezoelectric tube actuator with active shunt control", Micro Nano Lett., 2(1), 9-12. https://doi.org/10.1049/mnl:20065075.
- Araneo, R. and Falconi, C. (2013), "Lateral bending of tapered piezo-semiconductive nanostructures for ultra-sensitive mechanical force to voltage conversion", Nanotechnology, 24(26), 265707. https://doi.org/10.1088/0957-4484/24/26/265707.
- Arani, A. G. and Haghparast, E. (2011), "Electro-Mechanical Buckling of a Piezoelectric Annular Plate Reinforced with BNNTs Under Thermal Environment", J. Solid Mech., 3(4), 379-391.
- Arani, A. G., Haghparast, E. and Amir, S. (2012a), "Analytical Solution for Electro-mechanical Behavior of Piezoelectric Rotating Shaft Reinforced by BNNTs under Non-axisymmetric Internal Pressure", J. Solid Mech., 4(4), 339-354.
- Arani, A. G., Atabakhshian, V., Loghman, A., Shajari, A. R. and Amir, S. (2012b), "Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method", Physica B: Condensed Matter, 407(13), 2549-2555. https://doi.org/10.1016/j.physb.2012.03.065.
- Arani, A. G., Vossough, H., Kolahchi, R. and Barzoki, A. M. (2012c), "Electro-thermo nonlocal nonlinear vibration in an embedded polymeric piezoelectric micro plate reinforced by DWBNNTs using DQM", J. Mech. Sci. Technol., 26(10), 3047-3057. https://doi.org/10.1007/s12206-012-0816-6.
- Arani, A. G., Shokravi, M., Amir, S. and Mozdianfard, M. R. (2012d), "Nonlocal electro-thermal transverse vibration of embedded fluid-conveying DWBNNTs", J. Mech. Sci. Technol., 26(5), 1455-1462. https://doi.org/10.1007/s12206-012-0307-9.
- Arani, A. G., Haghshenas, A., Amir, S., Mozdianfard, M. R. and Latifi, M. (2013a), "Electro-thermo-mechanical response of thick-walled piezoelectric cylinder reinforced by boron-nitride nanotubes", Strength Mater., 45(1), 102-115. https://doi.org/10.1007/s11223-013-9437-2.
- Arani, A. G., Bidgoli, A. H., Ravandi, A. K., Roudbari, M. A., Amir, S., & Azizkhani, M. B. (2013b), "Induced nonlocal electric wave propagation of boron nitride nanotubes", J. Mech. Sci. Technol., 27(10), 3063-3071. https://doi.org/10.1007/s12206-013-0705-7.
- Arani, A. G., Kolahchi, R. and Mortazavi, S. A. (2014), "Nonlocal piezoelasticity based wave propagation of bonded double-piezoelectric nanobeam-systems", J. Mech. Mater. Design, 10(2), 179-191. https://doi.org/10.1007/s10999-014-9239-0.
- Arefi, M. and Zenkour, A. M. (2017), "Nonlocal electro-thermo-mechanical analysis of a sandwich nanoplate containing a Kelvin-Voigt viscoelastic nanoplate and two piezoelectric layers", Acta Mechanica, 228(2), 475-493. https://doi.org/10.1007/s00707-016-1716-0.
- Arya, S. K., Saha, S., Ramirez-Vick, J. E., Gupta, V., Bhansali, S. and Singh, S. P. (2012), "Recent advances in ZnO nanostructures and thin films for biosensor applications: Review", Analytica Chimica Acta, 737, 1-21. https://doi.org/10.1016/j.aca.2012.05.048.
- Asemi, S. R. and Farajpour, A. (2014), "Thermo-electro-mechanical vibration of coupled piezoelectric-nanoplate systems under non-uniform voltage distribution embedded in Pasternak elastic medium", Current Appl. Phys., 14(5), 814-832. https://doi.org/10.1016/j.cap.2014.03.012.
- Attia, A., Bousahla, A. A., Tounsi, A., Mahmoud, S. R. and Alwabli, A. S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.
- Aydin, M. (2013), "Vibrational and electronic properties of single-walled and double-walled boron nitride nanotubes", Vib. Spectroscopy, 66, 30-42. https://doi.org/10.1016/j.vibspec.2013.01.011.
- Badr, B. M. and Ali, W. G. (2010), "Nanopositioning fuzzy control for piezoelectric actuators", J. Eng. Technol., 10, 70-74.
- Bagheri, M., Bahari, A., Amiri, M. and Dehbandi, B. (2014), "Electronic and structural properties of Au-doped zigzag boron nitride nanotubes: A DFT study", Solid State Communications, 189, 1-4. https://doi.org/10.1016/j.ssc.2014.02.027.
- Bailey, T. and Ubbard, J. E. (1985), "Distributed piezoelectric-polymer active vibration control of a cantilever beam", J. Guidance Control Dynam., 8(5), 605-611. https://doi.org/10.2514/3.20029.
- Baima, J., Erba, A., Maschio, L., Zicovich-Wilson, C. M., Dovesi, R. and Kirtman, B. (2016), "Direct Piezoelectric Tensor of 3D Periodic Systems through a Coupled Perturbed Hartree- Fock/Kohn-Sham Method", Z. Phys. Chem., 230(5-7), 719-736. https://doi.org/10.1515/zpch-2015-0701.
- Bando, Y., Ogawa, K. and Golberg, D. (2001), "Insulating nanocables: Invar Fe-Ni alloy nanorods inside BN nanotubes", Chem. Phys. Lett., 347(4), 349-354. https://doi.org/10.1016/S0009-2614(01)01075-2.
- Barati, M.R. (2017), "On non-linear vibrations of flexoelectric nanobeams", J. Eng. Sci., 121, 143-153. https://doi.org/10.1016/j.ijengsci.2017.09.001.
- Boughey, F. L., Davies, T., Datta, A., Whiter, R. A., Sahonta, S. L. and Kar-Narayan, S. (2016), "Vertically aligned zinc oxide nanowires electrodeposited within porous polycarbonate templates for vibrational energy harvesting", Nanotechnology, 27(28), 28LT02. https://doi.org/10.1088/0957-4484/27/28/28LT02.
- Brush, D. O. and Almroth, B. O. (1975), Buckling of Bars, Plates, And Shells, McGraw-Hill, NY, USA.
- Capsal, J.F., Dantras, E., Laffont, L., Dandurand, J. and Lacabanne, C. (2010), "Nanotexture influence of BaTiO3 particles on piezoelectric behaviour of PA 11/BaTiO3 nanocomposites", J. Non Crystalline Solids, 356(11-17), 629-634. https://doi.org/10.1016/j.jnoncrysol.2009.06.050.
- Chang, J., Dommer, M., Chang, C. and Lin, L. (2012), "Piezoelectric nanofibers for energy scavenging applications", Nano Energy, 1(3), 356-371. https://doi.org/10.1016/j.nanoen.2012.02.003.
- Chen, C. Q., Shi, Y., Zhang, Y. S., Zhu, J. and Yan, Y. J. (2006), "Size dependence of Young's modulus in ZnO nanowires", Physical Rev. Lett., 96(7), 075505. https://doi.org/10.1103/PhysRevLett.96.075505.
- Chen, H., Chen, Y., Liu, Y., Fu, L., Huang, C. and Llewellyn, D. (2008), "Over 1.0 mm-long boron nitride nanotubes", Chem. Phys. Lett., 463(1), 130-133. https://doi.org/10.1016/j.cplett.2008.08.007.
- Chen, X., Xu, S., Yao, N. and Shi, Y. (2010), "1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers", Nano Letters, 10(6), 2133-2137. https://doi.org/10.1021/nl100812k.
- Chen, J. and Lee, J. D. (2010), "Atomic Formulation of Nano-Piezoelectricity in Barium Titanate", Nanosci. Nanotechnol. Lett., 2(1), 26-29. https://doi.org/10.1166/nnl.2010.1048.
- Chen, Y. Q., Zheng, X. J. and Li, W. (2010), "Size effect of mechanical behavior for lead-free (Na0. 82K0. 18) 0.5 Bi0. 5TiO3 nanofibers by nanoindentation", Mater. Sci. Eng. A Struct. Mater., 527(21), 5462. https://doi.org/10.1016/j.msea.2010.05.066
- Cheng, G. S., Zhang, L. D., Zhu, Y., Fei, G. T., Li, L., Mo, C. M. and Mao, Y. Q. (1999), "Large-scale synthesis of single crystalline gallium nitride nanowires", Appl. Phys. Lett., 75(16), 2455-2457. https://doi.org/10.1063/1.125046.
- Cheng, J., Ding, R., Liu, Y., Ding, Z. and Zhang, L. (2007a), "Computer simulation of hydrogen physisorption in single-walled boron nitride nanotube arrays", Comput. Mater. Sci., 40(3), 341-344. https://doi.org/10.1016/j.commatsci.2007.01.006.
- Cheng, J., Zhang, L., Ding, R., Ding, Z., Wang, X. and Wang, Z. (2007b), "Grand canonical Monte Carlo simulation of hydrogen physisorption in single-walled boron nitride nanotubes", J. Hydrogen Energy, 32(15), 3402-3405. https://doi.org/10.1016/j.ijhydene.2007.02.037.
- Cherif, R. H., Meradjah, M., Zidour, M., Tounsi, A., Belmahi, H. and Bensattalah, T. (2018), "Vibration analysis of nano beam using differential transform method including thermal effect", J. Nano Res., 54, 1-14. https://doi.org/10.4028/www.scientific.net/JNanoR.54.1.
- Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
- Choi, M., Murillo, G., Hwang, S., Kim, J. W., Jung, J. H., Chen, C. Y. and Lee, M. (2017), "Mechanical and electrical characterization of PVDF-ZnO hybrid structure for application to nanogenerator", Nano Energy, 33, 462-468. https://doi.org/10.1016/j.nanoen.2017.01.062
- Chopra, N. G. and Zettl, A. (1998), "Measurement of the elastic modulus of a multi-wall boron nitride nanotube", Solid State Communications, 105(5), 297-300. https://doi.org/10.1016/S0038-1098(97)10125-9
- Chowdhury, R., Adhikari, S. and Scarpa, F. (2010), "Elasticity and piezoelectricity of zinc oxide nanostructure", Physica E Low Dimensional Syst. Nanostruct., 42(8), 2036-2040. https://doi.org/10.1016/j.physe.2010.03.018.
- Ciofani, G., Raffa, V., Menciassi, A. and Cuschieri, A. (2009), "Boron nitride nanotubes: An innovative tool for nanomedicine", Nano Today, 4(1), 8-10. https://doi.org/10.1016/j.nantod.2008.09.001.
- Civalek, O. and Demir C. (2011), "Buckling and bending analyses of cantilever carbon nanotubes using the Euler-Bernoulli beam theory based on non-local continuum model", Asian J. Civil Eng., 12(5), 651-661.
- Croft, D., Stilson, S. and Devasia, S. (1999), "Optimal tracking of piezo-based nanopositioners", Nanotechnology, 10(2), 201. https://doi.org/10.1088/0957-4484/10/2/316.
- Curie, J. (1880), "Developpement par compression de l'electricite polaire dans les cristaux hemiedres a faces inclinees", Bull. Soc. Fr. Mineral., 3(90). https://doi.org/10.3406/bulmi.1880.1564.
- Dai, S., Gharbi, M., Sharma, P. and Park, H. S. (2011), "Surface piezoelectricity: size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials", J. Appl. Phys., 110(10), 104305. https://doi.org/10.1063/1.3660431.
- Dai, S. and Park, H. S. (2013), "Surface effects on the piezoelectricity of ZnO nanowires", J. Mech. Phys. Solids, 61(2), 385-397. https://doi.org/10.1016/j.jmps.2012.10.003.
- Dehkordi, S. F. and Beni, Y. T. (2017), "Electro-mechanical free vibration of single-walled piezoelectric/flexoelectric nano cones using consistent couple stress theory", Int. J. Mech. Sci., 128, 125-139. https://doi.org/10.1016/j.ijmecsci.2017.04.004.
- Demir, C., Mercan, K. and Civalek, O. (2016), "Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel", Composites Part B, 94, 1-10. https://doi.org/10.1016/j.compositesb.2016.03.031.
- Demir, C. and Civalek, O. (2017), "A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix", Compos Struct, 168, 872-884. https://doi.org/10.1016/j.compstruct.2017.02.091.
- Djurisic, A. B., Tam, K. H., Hsu, Y. F., Zhang, S. L., Xie, M. H. and Chan, W. K. (2007), "GaN nanowires-influence of the starting material on nanowire growth", Thin Solid Films, 516(2), 238-242. https://doi.org/10.1016/j.tsf.2007.06.031.
- Djurisic, A. B., Ng, A. M. C. and Chen, X. Y. (2010), "ZnO nanostructures for optoelectronics: material properties and device applications", Progress Quantum Electronics, 34(4), 191-259. https://doi.org/10.1016/j.pquantelec.2010.04.001.
- Draiche, K., Tounsi, A. and Mahmoud, S. R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671.
- Duan, X. and Lieber, C. M. (2000), "Laser-assisted catalytic growth of single crystal GaN nanowires", J. American Chem. Society, 122(1), 188-189. https://doi.org/10.1021/ja993713u.
- Ebrahimi, F. and Salari, E. (2015), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007.
- Ebrahimi, F. and Barati, M. R. (2017a), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazilian Soc. Mech. Sci. Eng., 39(3), 937-952. https://doi.org/10.1007/s40430-016-0551-5.
- Ebrahimi, F. and Barati, M. R. (2017b), "Modeling of smart magnetically affected flexoelectric/piezoelectric nanostructures incorporating surface effects", Nanomater. Nanotechnol., 7, https://doi.org/10.1177/1847980417713106.
- Ebrahimi, F. and Barati, M.R. (2017c), "Vibration analysis of size-dependent flexoelectric nanoplates incorporating surface and thermal effects", Mech. Adv. Mater. Struct., 1-11. https://doi.org/10.1080/15376494.2017.1285464.
- Ebrahimi, F. and Dabbagh, A. (2018), "Viscoelastic wave propagation analysis of axially motivated double-layered graphene sheets via nonlocal strain gradient theory", Waves in Random Complex Media, 1-20. https://doi.org/10.1080/17455030.2018.1490505.
- El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
- Fakrach, B., Rahmani, A., Chadli, H., Sbai, K. and Sauvajol, J. L. (2009), "Raman spectrum of single-walled boron nitride nanotube", Physica E Low Dimensional Syst. Nanostruct., 41(10), 1800-1805. https://doi.org/10.1016/j.physe.2009.07.002.
- Fan, Z. and Lu, J. G. (2005), "Zinc oxide nanostructures: synthesis and properties", J. Nanosci. Nanotechnol., 5(10), 1561-1573. https://doi.org/10.1166/jnn.2005.182.
- Fang, X. Q. and Liu, J. X. (2011), "Dynamic stress and electric displacement around a nano-fiber in piezoelectric nanocomposites under electro-elastic waves", Philosophical Magazine Letters, 91(9), 621-631. https://doi.org/10.1080/09500839.2011.600258.
- Fang, X. Q. and Zhu, C. S. (2017), "Size-dependent nonlinear vibration of nonhomogeneous shell embedded with a piezoelectric layer based on surface/interface theory", Compos. Struct., 160, 1191-1197. https://doi.org/10.1016/j.compstruct.2016.11.008.
- Farajpour, A., Rastgoo, A. and Mohammadi, M. (2017), "Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment", Physica B: Condensed Matter, 509, 100-114. https://doi.org/10.1016/j.physb.2017.01.006.
- Fourn, H., Atmane, H. A., Bourada, M., Bousahla, A. A., Tounsi, A. and Mahmoud, S. R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109.
- Freitas, A., Azevedo, S. and Kaschny, J. R. (2013), "Effects of a transverse electric field on the electronic properties of single-and multi-wall BN nanotubes", Solid State Communications, 153(1), 40-45. https://doi.org/10.1016/j.ssc.2012.09.024.
- Ganji, M. D. and Mohammadi-Nejad, A. (2008), "Simulation of STM technique for electron transport through boron-nitride nanotubes", Physics Letters A, 372(27), 4839-4844. https://doi.org/10.1016/j.physleta.2008.05.038.
- Gao, P. X. and Wang, Z. L. (2005), "Nanoarchitectures of semiconducting and piezoelectric zinc oxide", J. Appl. Phys., 97(4), 044304. https://doi.org/10.1063/1.1847701.
- Gheshlaghi, B. and Hasheminejad, S. M. (2012), "Vibration analysis of piezoelectric nanowires with surface and small scale effects", Current Appl. Phys., 12(4), 1096-1099. https://doi.org/10.1016/j.cap.2012.01.014.
- Ghorbanpour Arani, A., Shams, S., Amir, S. and Khoddami Maraghi, Z. (2012a), "Effects of Electro-Thermal Fields on Buckling of a Piezoelectric Polymeric Shell Reinforced with DWBNNTs", J. Nanostruct., 2(3), 345-355.
- Ghorbanpour Arani, A., Amir, S., Shajari, A. R. and Mozdianfard, M.R. (2012b), "Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory", Compos. Part B Eng., 43(2), 195-203. https://doi.org/10.1016/j.compositesb.2011.10.012.
- Ghorbanpour Arani, A., Shajari, A. R., Amir, S. and Loghman, A. (2012c), "Electro-thermo-mechanical nonlinear nonlocal vibration and instability of embedded micro-tube reinforced by BNNT, conveying fluid", Physica E Low Dimensional Syst. Nanostruct., 45, 109-121. https://doi.org/10.1016/j.compositesb.2011.10.012.
- Ghorbanpour Arani, A., Roudbari, M. A. and Amir, S. (2012d), "Nonlocal vibration of SWBNNT embedded in bundle of CNTs under a moving nanoparticle", Physica B Condensed Matter, 407(17), 3646-3653. https://doi.org/10.1016/j.physb.2012.05.043.
- Ghorbanpour Arani, A., Kolahchi, R. and Vossough, H. (2012e), "Nonlocal wave propagation in an embedded DWBNNT conveying fluid via strain gradient theory", Physica B: Condensed Matter, 407(21), 4281-4286. https://doi.org/10.1016/j.physb.2012.07.018.
- Ghorbanpour Arani, A., Abdollahian, M., Kolahchi, R. and Rahmati, A. H. (2013a), "Electro-thermo-torsional buckling of an embedded armchair DWBNNT using nonlocal shear deformable shell model", Compos. Part B Eng., 51, 291-299. https://doi.org/10.1016/j.compositesb.2013.03.017.
- Ghorbanpour Arani, A., Shajari, A. R., Atabakhshian, V., Amir, S. and Loghman, A. (2013a), "Nonlinear dynamical response of embedded fluid-conveyed micro-tube reinforced by BNNTs", Compos. Part B Eng., 44(1), 424-432. https://doi.org/10.1016/j.compositesb.2012.04.025.
- Ghorbanpour Arani, A., Hashemian, M. and Kolahchi, R. (2013b), "Time discretization effect on the nonlinear vibration of embedded SWBNNT conveying viscous fluid", Compos. Part B Eng., 54, 298-306. https://doi.org/10.1016/j.compositesb.2013.05.031.
- Ghorbanpour Arani, A. and Roudbari, M. A. (2013), "Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle", Thin Solid Films, 542, 232-241. https://doi.org/10.1016/j.tsf.2013.06.025.
- Ghorbanpour Arani, A. and Amir, S. (2013), "Electro-thermal vibration of visco-elastically coupled BNNT systems conveying fluid embedded on elastic foundation via strain gradient theory", Physica B: Condensed Matter, 419, 1-6. https://doi.org/10.1016/j.physb.2013.03.010.
- Guo, L. and Singh, R. N. (2009), "Catalytic growth of boron nitride nanotubes using gas precursors", Physica E Low Dimensional Syst. Nanostruct., 41(3), 448-453. https://doi.org/10.1016/j.physe.2008.09.009.
- Gupta, M. K., Sinha, N., Singh, B. K., Singh, N., Kumar, K. and Kumar, B. (2009), "Piezoelectric, dielectric, optical and electrical characterization of solution grown flower-like ZnO nanocrystal", Materials Lett., 63(22), 1910-1913. https://doi.org/10.1016/j.matlet.2009.06.003.
- Haghpanahi, M., Oveisi, A. and Gudarzi, M. (2013), "Vibration analysis of piezoelectric nanowires using the finite element method", Int. Res. J. Appl. Basic Sci., 4(1), 205-212.
- Hai-Bo, L., Mao-Sheng, C., Jie, Y., Da-Wei, W., Quan-Liang, Z. and Fu-Chi, W. (2008), "Enhanced mechanical behaviour of lead zirconate titanate piezoelectric composites incorporating zinc oxide nanowhiskers", Chinese Physics B, 17(11), 4323. https://doi.org/10.1088/1674-1056/17/11/060.
- Han, W., Fan, S., Li, Q. and Hu, Y. (1997), "Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction", Science, 277(5330), 1287-1289. https://doi.org/10.1126/science.277.5330.1287.
- Han, W., Redlich, P., Ernst, F. and Ruhle, M. (2000), "Synthesis of GaN-carbon composite nanotubes and GaN nanorods by arc discharge in nitrogen atmosphere", Appl. Phys. Lett., 76(5), 652-654. https://doi.org/10.1063/1.125848.
- He, J. and Lilley, C. M. (2008a), "Surface effect on the elastic behavior of static bending nanowires", Nano Letters, 8(7), 1798-1802. https://doi.org/10.1021/nl0733233.
- He, J. and Lilley, C. M. (2008b), "Surface stress effect on bending resonance of nanowires with different boundary conditions", Appl. Phys. Lett., 93(26), 263108. https://doi.org/10.1063/1.3050108.
- Hebali, H., Tounsi, A., Houari, M. S. A., Bessaim, A. and Bedia, E. A. A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665.
- Hiralal, P., Unalan, H. E. and Amaratunga, G. A. (2012), "Nanowires for energy generation", Nanotechnology, 23(19), 194002. https://doi.org/10.1088/0957-4484/23/19/194002.
- Hocevar, M., Songmuang, R., Den Hertog, M., Besombes, L., Bleuse, J., Niquet, Y. M. and Pelekanos, N. T. (2013), "Residual strain and piezoelectric effects in passivated GaAs/AlGaAs core-shell nanowires", Appl. Phys. Lett., 102(19), 191103. https://doi.org/10.1063/1.4803685.
- Hosseini, M., Maryam, A. Z. B. and Bahaadini, R. (2017), "Forced vibrations of fluid-conveyed double piezoelectric functionally graded micropipes subjected to moving load", Microfluidics Nanofluidics, 21(8), 134. https://doi.org/10.1007/s10404-017-1963-y.
- Hosseini-Hashemi, S., Nazemnezhad, R. and Bedroud, M. (2014), "Surface effects on nonlinear free vibration of functionally graded nanobeams using nonlocal elasticity", Appl. Math. Modelling, 38(14), 3538-3553. https://doi.org/10.1016/j.apm.2013.11.068.
- Houari, M. S. A., Tounsi, A., Bessaim, A. and Mahmoud, S. R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257.
- Huang, G. Y. and Yu, S. W. (2006), "Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring", Physica Status Solidi (b), 243(4), 22-24. https://doi.org/10.1002/pssb.200541521.
- Hughes, W. L. and Wang, Z. L. (2004), "Formation of piezoelectric single-crystal nanorings and nanobows", J. American Chem. Soc., 126(21), 6703-6709. https://doi.org/10.1021/ja049266m.
- Hughes, W. L. and Wang, Z. L. (2005), "Controlled synthesis and manipulation of ZnO nanorings and nanobows", Appl. Phys. Lett., 86(4), 043106. https://doi.org/10.1063/1.1853514.
- Hwang, H. J., Choi, W. Y. and Kang, J. W. (2005), "Molecular dynamics simulations of nanomemory element based on boron-nitride nanotube-to-peapod transition", Comput. Mater. Sci., 33(1), 317-324. https://doi.org/10.1016/j.commatsci.2004.12.068.
- Hanifi Hachemi Amar, L., Kaci, A., Tounsi, A. (2017), "On the size-dependent behavior of functionally graded micro-beams with porosities", Struct. Eng. Mech., 64(5), 527-541. https://doi.org/10.12989/sem.2017.64.5.527.
- Hadji, L., Hassaine Daouadji, T., Ait Amar Meziane, M., Tlidji, Y., (2016c), "Analysis of functionally graded beam using a new first-order shear deformation theory", Struct. Eng. Mech., 57(2), 315-325. http://dx.doi.org/10.12989/sem.2016.57.2.315.
- Ishii, T., Sato, T., Sekikawa, Y. and Iwata, M. (1981), "Growth of whiskers of hexagonal boron nitride", J. Crystal Growth, 52, 285-289. https://doi.org/10.1016/0022-0248(81)90206-2.
- Jafari, A., Khatibi, A. A. and Mashhadi, M. M. (2012), "Evaluation of Mechanical and Piezoelectric Properties of Boron Nitride Nanotube: A Novel Electrostructural Analogy Approach", J. Comput. Theroetical Nanosci., 9(3), 461-468. https://doi.org/10.1166/jctn.2012.2047.
- Jiang, L. and Guo, W. (2011), "A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes", J. Mech. Phys. Solids, 59(6), 1204-1213. https://doi.org/10.1016/j.jmps.2011.03.008.
- Jing, Y. H., Yu, K. P., Qin, X. and Shen, J. (2012), "Composition-dependent mechanical and thermal transport properties of carbon/silicon core/shell nanowires", J. Shanghai Jiaotong University (Science), 17, 743-747. https://doi.org/10.1007/s12204-012-1357-y.
- Karimi, M., Shahidi, A. R. and Ziaei-Rad, S. (2017), "Surface layer and nonlocal parameter effects on the in-phase and out-of-phase natural frequencies of a double-layer piezoelectric nanoplate under thermo-electro-mechanical loadings", Microsyst. Technol., 23(10), 4903-4915. https://doi.org/10.1007/s00542-017-3395-8.
- Ke, L. L., Wang, Y. S. and Wang, Z. D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023.
- Ke, L. L. and Wang, Y. S. (2012), "Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory", Smart Mater. Struct., 21(2), 025018. https://doi.org/10.1088/0964-1726/21/2/025018.
- Kheibari, F. and Beni, Y. T. (2017), "Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model", Mater. Design, 114, 572-583. https://doi.org/10.1016/j.matdes.2016.10.041.
- Khodami Maraghi, Z., Ghorbanpour Arani, A., Kolahchi, R., Amir, S. and Bagheri, M. R. (2013), "Nonlocal vibration and instability of embedded DWBNNT conveying viscose fluid", Compos. Part B Eng., 45(1), 423-432. https://doi.org/10.1016/j.compositesb.2012.04.066.
- Kim, J. W., Nunez, J. C., Siochi, E. J., Wise, K. E., Lin, Y., Connell, J. W. and Smith, M. W. (2012), "In situ mechanical property measurements of amorphous carbon-boron nitride nanotube nanostructures", Nanotechnology, 23(3), 035701. https://doi.org/10.1088/0957-4484/23/3/035701
- Kolahchi, R. and Ghorbanpour, A. A. (2012), "Nonlinear Vibration and Instability Analysis of a PVDF Cylindrical Shell Reinforced with BNNTs Conveying Viscose Fluid Using HDQ Method", J. Solid Mech., 4(3), 267-276.
- Kolodyazhnaya, M. P., Zvyagina, G. A., Gudim, I. A., Bilych, I. V., Burma, N. G., Zhekov, K. R. and Fil, V. D. (2017), "Piezoelectric response in SmFe3 (BO3) 4, a non-piezoactive configuration. The surface piezoelectric effect", Low Temperature Physics, 43(8), 924-929. https://doi.org/10.1063/1.5001291.
- Kong, X. Y. and Wang, Z. L. (2003), "Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts", Nano Letters, 3(12), 1625-1631. https://doi.org/10.1021/nl034463p.
- Kumar, B., Lee, K. Y., Park, H. K., Chae, S. J., Lee, Y. H. and Kim, S. W. (2011), "Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators", Acs Nano, 5(5), 4197-4204. https://doi.org/10.1021/nn200942s.
- Kumar, B. and Kim, S. W. (2012), "Energy harvesting based on semiconducting piezoelectric ZnO nanostructures", Nano Energy, 1(3), 342-355. https://doi.org/10.1016/j.nanoen.2012.02.001.
- Lahiri, D., Singh, V., Benaduce, A. P., Seal, S., Kos, L. and Agarwal, A. (2011), "Boron nitride nanotube reinforced hydroxyapatite composite: Mechanical and tribological performance and in-vitro biocompatibility to osteoblasts", J. Mech. Behavior Biomedical Mater., 4(1), 44-56. https://doi.org/10.1016/j.jmbbm.2010.09.005.
- Larbi Chaht, F., Kaci, A., Houari, M. S. A., Tounsi, A., Anwar Beg, O. and Mahmoud, S. R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel. Compos. Struct, 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
- Lee, Y. B., Han, J. K., Noothongkaew, S., Kim, S. K., Song, W., Myung, S. and An, K. S. (2017), "Toward Arbitrary-Direction Energy Harvesting through Flexible Piezoelectric Nanogenerators Using Perovskite PbTiO3 Nanotube Arrays", Adv. Mater., 29(6). https://doi.org/10.1002/adma.201604500.
- Li, F. M., Hsieh, G. W., Dalal, S., Newton, M. C., Stott, J. E., Hiralal, P. and Milne, W. I. (2008), "Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistors", Electron Devices, IEEE Transactions on, 55(11), 3001-3011. https://doi.org/10.1109/TED.2008.2005180.
- Li, C., Liu, J. J., Cheng, M. and Fan, X.L. (2017), "Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces", Compos. Part B Eng., 116, 153-169. https://doi.org/10.1016/j.compositesb.2017.01.071.
- Li, X. B., Li, L., Hu, Y. J., Ding, Z. and Deng, W. M. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032.
- Liang, X., Yang, W., Hu, S. and Shen, S. (2016), "Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads", J. Phys D Appl. Phys., 49(11), 115307. https://doi.org/10.1088/0022-3727/49/11/115307.
- Lin, H. B., Cao, M. S., Zhao, Q. L., Shi, X. L., Wang, D. W. and Wang, F. C. (2008), "Mechanical reinforcement and piezoelectric properties of nanocomposites embedded with ZnO nanowhiskers", Scripta Materialia, 59(7), 780-783. https://doi.org/10.1016/j.scriptamat.2008.06.016.
- Lippmann, G. (1881), "Principe de la conservation de l'electricite, ou second principe de la theorie des phenomenes electriques", Journal de Physique Theorique et Appliquee, 10(1), 381-394. https://doi.org/10.1051/jphystap:0188100100038100.
- Liu, W., Lee, M., Ding, L., Liu, J. and Wang, Z. L. (2010), "Piezopotential Gated Nanowire- Nanotube Hybrid Field-Effect Transistor", Nano Letters, 10(8), 3084-3089. https://doi.org/10.1021/nl1017145.
- Liu, C., Hu, S. and Shen, S. (2012), "Effect of flexoelectricity on electrostatic potential in a bent piezoelectric nanowire", Smart Mater. Struct., 21(11), 115024. https://doi.org/10.1088/0964-1726/21/11/115024.
- Liu, C., Ke, L. L., Wang, Y. S., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174. https://doi.org/10.1016/j.compstruct.2013.05.031
- Liu, C. and Wang, J. (2017), "Size-dependent electromechanical properties in piezoelectric superlattices due to flexoelectric effect", Theoretical Appl. Mech. Lett., 7(2), 88-92. https://doi.org/10.1016/j.taml.2017.02.007.
- Loh, K. P., Lin, M., Yeadon, M., Boothroyd, C. and Hu, Z. (2004), "Growth of boron nitride nanotubes and iron nanowires from the liquid flow of FeB nanoparticles", Chem. Phys. Lett., 387(1), 40-46. https://doi.org/10.1016/j.cplett.2004.01.093.
- Lu, Y. H., Shen, Y. G., Li, K. Y. and Chen, H. (2006), "Effects of nitrogen content on nanostructure evolution, mechanical behaviors and thermal stability in Ti-B-N thin films", Surface Coatings Technol., 201(3), 1228-1235. https://doi.org/10.1016/j.surfcoat.2006.01.045.
- Ma, L.H., Ke, L.L., Wang, Y.Z. and Wang, Y.S. (2017), "Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models", Physica E Low Dimensional Syst. Nanostruct., 86, 253-261. https://doi.org/10.1016/j.physe.2016.10.036.
- Maity, K., Mahanty, B., Sinha, T.K., Garain, S., Biswas, A., Ghosh, S.K. and Mandal, D. (2017), "Two-Dimensional Piezoelectric MoS2-Modulated Nanogenerator and Nanosensor Made of Poly (vinlydine Fluoride) Nanofiber Webs for Self-Powered Electronics and Robotics", Energy Technol., 5(2), 234-243. https://doi.org/10.1002/ente.201600419.
- Majidi, C., Haataja, M. and Srolovitz, D.J. (2010), "Analysis and design principles for shear-mode piezoelectric energy harvesting with ZnO nanoribbons", Smart Mater. Struct., 19(5), 055027. https://doi.org/10.1088/0964-1726/19/5/055027.
- Malikan, M. (2017), "Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory", Appl. Math. Model., 48, 196-207. https://doi.org/10.1016/j.apm.2017.03.065.
- Meitzler, A.W., A.H., Tiersten, H.F., Warner, A.W., Berlincourt, D., Couqin, G. A. and Welsh III, F. S. (1988), IEEE Standard on Piezoelectricity, IEEE, USA.
- Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E. A. and Mahmoud, S. R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandwich Struct. Mater., 21(2), 727-757. https://doi.org/10.1177%2F1099636217698443. https://doi.org/10.1177/1099636217698443
- Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S. R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.
- Meng, Y., Xiu, P., Huang, B., Wang, Z., Zhang, R.Q. and Zhou, R. (2014), "A unique feature of chiral transition of a difluorobenzo [c] phenanthrene molecule confined in a boron-nitride nanotube based on molecular dynamics simulations", Chem. Phys. Lett., 591, 265-267. https://doi.org/10.1016/j.cplett.2013.11.052.
- Mercan, K. and Civalek, O. (2016), "DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix", Compos. Struct. 143, 300-309. https://doi.org/10.1016/j.compstruct.2016.02.040.
- Mercan K and Civalek, O. (2017), "Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocalelasticity using the method of HDQ", Compos. Part B, 114, 34-45. https://doi.org/10.1016/j.compositesb.2017.01.067.
- Meziane, M. A. A., Abdelaziz, H. H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandwich Struct. Mater., 16(3), 293-318. https://doi.org/10.1177%2F1099636214526852. https://doi.org/10.1177/1099636214526852
- Minary-Jolandan, M., Bernal, R.A. and Espinosa, H.D. (2011), "Strong piezoelectricity in individual GaN nanowires", MRS Communications, 1(01), 45-48. https://doi.org/10.1557/mrc.2011.14
- Minary-Jolandan, M., Bernal, R.A., Kuljanishvili, I., Parpoil, V. and Espinosa, H.D. (2012), "Individual GaN nanowires exhibit strong piezoelectricity in 3D", Nano Letters, 12(2), 970-976. https://doi.org/10.1021/nl204043y.
- Mirnezhad, M., Ansari, R. and Rouhi, H. (2013), "Mechanical properties of multilayer boron nitride with different stacking orders", Superlattices Microstructures, 53, 223-231. https://doi.org/10.1016/j.spmi.2012.10.016.
- Mohai, I., Mohai, M., Bertoti, I., Sebestyen, Z., Nemeth, P., Babievskaya, I.Z. and Szepvolgyi, J. (2011), "Formation of thin boron nitride coating on multiwall carbon nanotube surfaces" Diamond Related Mater., 20(2), 227-231. https://doi.org/10.1016/j.diamond.2010.12.001.
- Mohammadimehr, M. and Rahmati, A.H. (2013), "Small scale effect on electro-thermo-mechanical vibration analysis of single-walled boron nitride nanorods under electric excitation", Turkish J. Eng. Environ. Sci., 37(1).
- Moheimani, S.R. and Fleming, A.J. (2006), Piezoelectric Transducers For Vibration Control And Damping, Springer Science & Business Media, Germany.
- Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018a), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397.
- Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397.
- Momeni, K., Odegard, G.M. and Yassar, R.S. (2012), "Finite size effect on the piezoelectric properties of ZnO nanobelts: a molecular dynamics approach", Acta materialia, 60(13), 5117-5124. https://doi.org/10.1016/j.actamat.2012.06.041.
- Moon, W.H. and Hwang, H.J. (2004), "Molecular mechanics of structural properties of boron nitride nanotubes", Physica E Low Dimensional Syst. Nanostruct., 23(1), 26-30. https://doi.org/10.1016/j.physe.2003.11.273
- Mortazavi, B. and Remond, Y. (2012), "Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations", Physica E Low Dimensional Syst. Nanostruct., 44(9), 1846-1852. https://doi.org/10.1016/j.physe.2012.05.007.
- Mosallaie Barzoki, A.A., Ghorbanpour Arani, A., Kolahchi, R. and Mozdianfard, M.R. (2012), "Electro-thermo-mechanical torsional buckling of a piezoelectric polymeric cylindrical shell reinforced by DWBNNTs with an elastic core", Appl. Math. Modelling, 36(7), 2983-2995. https://doi.org/10.1016/j.apm.2011.09.093.
- Mosallaie Barzoki, A.A., Ghorbanpour Arani, A., Kolahchi, R., Mozdianfard, M.R. and Loghman, A. (2013), "Nonlinear buckling response of embedded piezoelectric cylindrical shell reinforced with BNNT under electro-thermo-mechanical loadings using HDQM", Compos. Part B Eng., 44(1), 722-727. https://doi.org/10.1016/j.compositesb.2012.01.052.
- Mouffoki, A., Adda Bedia, E. A., Houari, M. S. A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369.
- Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006.
- Numanoglu, H.M., Akgoz, B. and Civalek, O. (2018), "On dynamic analysis of nanorods", J. Eng. Sci., 130, 33-50. https://doi.org/10.1016/j.ijengsci.2018.05.001.
- Oku, T., Koi, N. and Suganuma, K. (2008), "Synthesis and nanostructure of boron nitride nanotubes grown from iron-evaporated boron", Diamond Related Mater., 17(7), 1805-1807. https://doi.org/10.1016/j.diamond.2008.01.009.
- Panchal, M.B. and Upadhyay, S.H. (2013), "Cantilevered single walled boron nitride nanotube based nanomechanical resonators of zigzag and armchair forms", Physica E Low Dimensional Syst. Nanostruct., 50, 73-82. https://doi.org/10.1016/j.physe.2013.02.018
- Panchal, M.B., Upadhyay, S.H. and Harsha, S.P. (2013), "Vibrational characteristics of defective single walled BN nanotube based nanomechanical mass sensors: single atom vacancies and divacancies", Sensors Actuators A Physical, 197, 111-121. https://doi.org/10.1016/j.sna.2013.04.011.
- Pandya, H.J. and Chandra, S. (2011), "Zinc oxide nanostructures by oxidation of zinc films deposited on oxidized silicon substrate", J. Nano-Electron. Phys., 3(1), 409-413.
- Patil, S.R. and Melnik, R.V. (2009), "Coupled electromechanical effects in II-VI group finite length semiconductor nanowires", J. Physics D Appl. Phys., 42(14), 145113. https://doi.org/10.1088/0022-3727/42/14/145113.
- Pour, H.R., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061.
- Qi, J., Qian, X., Qi, L., Feng, J., Shi, D. and Li, J. (2012), "Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons", Nano Letters, 12(3), 1224-1228. https://doi.org/10.1021/nl2035749.
- Rafiee, R. and Moghadam, R.M. (2014), "On the modeling of carbon nanotubes: A critical review", Compos. Part B Eng., 56, 435-449. https://doi.org/10.1016/j.compositesb.2013.08.037
- Rahmati, A.H. and Mohammadimehr, M. (2014), "Vibration analysis of non-uniform and non-homogeneous boron nitride nanorods embedded in an elastic medium under combined loadings using DQM", Physica B: Condensed Matter, 440, 88-98. https://doi.org/10.1016/j.physb.2014.01.036.
- Razavi, H., Babadi, A.F. and Beni, Y.T. (2017), "Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory", Compos. Struct., 160, 1299-1309. https://doi.org/10.1016/j.compstruct.2016.10.056.
- Refaeinejad, V., Rahmani, O. and Hosseini, S.A.H. (2017), "Evaluation of nonlocal higher order shear deformation models for the vibrational analysis of functionally graded nanostructures", Mech. Adv. Mater. Struct., 24(13), 1116-1123. https://doi.org/10.1080/15376494.2016.1227496.
- Rezania, H. (2014), "The effect of local electronic interaction on the optical properties of boron-nitride nanotubes", Physica E Low Dimensional Syst. Nanostruct., 61, 48-52. https://doi.org/10.1016/j.physe.2014.03.014.
- Sadek, A.S., Karabalin, R.B., Du, J., Roukes, M.L., Koch, C. and Masmanidis, S. C. (2010), "Wiring nanoscale biosensors with piezoelectric nanomechanical resonators", Nano letters, 10(5), 1769-1773. https://doi.org/10.1021/nl100245z.
- Sahmani, S., Aghdam, M.M. and Akbarzadeh, A.H. (2016), "Size-dependent buckling and postbuckling behavior of piezoelectric cylindrical nanoshells subjected to compression and electrical load", Mater. Design, 105, 341-351. https://doi.org/10.1016/j.matdes.2016.05.065
- Sahmani, S. and Fattahi, A.M. (2017), "Thermo-electro-mechanical size-dependent postbuckling response of axially loaded piezoelectric shear deformable nanoshells via nonlocal elasticity theory", Microsyst. Technol., 23(10), 5105-5119. https://doi.org/10.1007/s00542-017-3316-x.
- Salehi-Khojin, A. and Jalili, N. (2008), "Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings", Compos. Sci. Technol., 68(6), 1489-1501. https://doi.org/10.1016/j.compscitech.2007.10.024.
- Scrymgeour, D.A. and Hsu, J.W. (2008), "Correlated piezoelectric and electrical properties in individual ZnO nanorods", Nano Letters, 8(8), 2204-2209. https://doi.org/10.1021/nl080704n.
- Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by nonlocal FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
- Seo, M., Jung, Y., Lim, D., Cho, D. and Jeong, Y. (2013), "Piezoelectric and field emitted properties of controlled ZnO nanorods on CNT yarns", Mater. Letters, 92, 177-180. https://doi.org/10.1016/j.matlet.2012.10.076.
- Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates". J. Eng. Sci., 120, 82-99. https://doi.org/10.1016/j.ijengsci.2017.06.008.
- Sharma, N.D., Maranganti, R. and Sharma, P. (2007), "On the possibility of piezoelectric nanocomposites without using piezoelectric materials", J. Mech. Phys. Solids, 55(11), 2328-2350. https://doi.org/10.1016/j.jmps.2007.03.016.
- Shokuhfar, A. and Ebrahimi-Nejad, S. (2013)' "Effects of structural defects on the compressive buckling of boron nitride nanotubes", Physica E Low Dimensional Syst. Nanostruct., 48, 53-60. https://doi.org/10.1016/j.physe.2012.11.024.
- Sinha, N., Wabiszewski, G.E., Mahameed, R., Felmetsger, V.V., Tanner, S. M., Carpick, R. W. and Piazza, G. (2009), "Ultra-thin AlN piezoelectric nano-actuators", Solid-State Sensors, Actuators and Microsystems Conference, 2009, TRANSDUCERS 2009. International, Denver, Colorado, USA. 469-472. https://doi.org/10.1109/SENSOR.2009.5285460.
- Soltani, A., Moradi, A.V., Bahari, M., Masoodi, A. and Shojaee, S. (2013), "Computational investigation of the electronic and structural properties of CN radical on the pristine and Al-doped (6, 0) BN nanotubes", Physica B: Condensed Matter, 430, 20-26. https://doi.org/10.1016/j.physb.2013.07.032.
- Song, F., Huang, G.L., Park, H.S. and Liu, X.N. (2011), "A continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses", J. Solids Struct., 48(14), 2154-2163. https://doi.org/10.1016/j.ijsolstr.2011.03.021.
- Sun, C., Shi, J. and Wang, X. (2010), "Fundamental study of mechanical energy harvesting using piezoelectric nanostructures", J. Appl. Phys., 108(3), 034309. https://doi.org/10.1063/1.3462468.
- Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., 54(4), 755-769. https://doi.org/10.12989/sem.2015.54.4.755.
- Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
- Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547.
- Ulus, H., Ustun, T., Eskizeybek, V., Sahin, O.S., Avci, A. and Ekrem, M. (2013), "Boron nitride-MWCNT/epoxy hybrid nanocomposites: Preparation and mechanical properties", Appl. Surface Sci., 37-42. https://doi.org/10.1016/j.apsusc.2013.12.070.
- Vahedi Fakhrabad, D. and Shahtahmassebi, N. (2013), "First-principles calculations of the Young's modulus of double wall boron-nitride nanotubes", Mater. Chem. Phys., 138(2), 963-966. https://doi.org/10.1016/j.matchemphys.2013.01.004.
- Wang, Z.L. (2004), "Nanostructures of zinc oxide", Mater. Today, 7(6), 26-33. https://doi.org/10.1016/S1369-7021(04)00286-X.
- Wang, Z.L. (2004), "Zinc oxide nanostructures: growth, properties and applications", J. Phys. Condensed Matter, 16(25), R829. https://doi.org/10.1088/0953-8984/16/25/R01.
- Wang, Z.L. (2004), "Zinc oxide nanostructures: growth, properties and applications", J. Phys. Condensed Matter, 16(25), R829. https://doi.org/10.1088/0953-8984/16/25/R01.
- Wang, Z., Suryavanshi, A.P. and Yu, M.F. (2006), "Ferroelectric and piezoelectric behaviors of individual single crystalline BaTiO3 nanowire under direct axial electric biasing", Appl. Phys. Lett., 89(8), 082903. https://doi.org/10.1063/1.2338015.
- Wang, Z. L. (2007), "Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing", Appl. Phys. A, 88(1), 7-15. https://doi.org/10.1007/s00339-007-3942-8.
- Wang, Z., Zu, X., Yang, L., Gao, F. and Weber, W. J. (2008), "Molecular dynamics simulation on the buckling behavior of GaN nanowires under uniaxial compression", Physica E Low Dimensional Syst. Nanostruct., 40(3), 561-566. https://doi.org/10.1016/j.physe.2007.08.040.
- Wang, X. and Lee, J.D. (2010), "Nano-Piezoelectricity in BaTiO3: An Atomistic/Continuum Simulation", Adv. Sci. Lett.,, 3(4), 422-427. https://doi.org/10.1166/asl.2010.1164.
- Wang, G.F. and Feng, X.Q. (2010), "Effect of surface stresses on the vibration and buckling of piezoelectric nanowires", Europhys. Lett., 91(5), 56007. https://doi.org/10.1209/0295-5075/91/56007
- Wang, C.Y., Li, L.J. and Chew, Z.J. (2011), "Vibrating ZnO-CNT nanotubes as pressure/stress sensors", Physica E Low Dimensional Syst. Nanostruct., 43(6), 1288-1293. https://doi.org/10.1016/j.physe.2011.03.003.
- Wang, J., Li, H., Li, Y., Yu, H., He, Y. and Song, X. (2011), "Deformation of copper-filled single-walled boron-nitride nanotubes under axial compression", Physica E Low Dimensional Syst. Nanostruct., 44(1), 286-289. https://doi.org/10.1016/j.physe.2011.08.024.
- Wang, X. and Shi, J. (2012), "Piezoelectric nanogenerators for self-powered nanodevices", Piezoelectric Nanomaterials for Biomedical Applications, Springer Berlin Heidelberg, Berlin, Germany. 135-172. https://doi.org/10.1007/978-3-642-28044-3_5.
- Wang, K.F. and Wang, B.L. (2012), "The electromechanical coupling behavior of piezoelectric nanowires: Surface and small-scale effects", EPL (Europhysics Letters), 97(6), 66005. https://doi.org/10.1209/0295-5075/97/66005.
- Wang, W., Li, P., Jin, F. and Wang, J. (2016), "Vibration analysis of piezoelectric ceramic circular nanoplates considering surface and nonlocal effects", Compos. Struct., 140, 758-775. https://doi.org/10.1016/j.compstruct.2016.01.035.
- Wu, W. (2016), "High-performance piezoelectric nanogenerators for self-powered nanosystems: Quantitative standards and figures of merit", Nanotechnology, 27(11), 112503. http://dx.doi.org/10.1088/0957-4484/27/11/112503.
- Xi, Y., Song, J., Xu, S., Yang, R., Gao, Z., Hu, C. and Wang, Z.L. (2009), "Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators", J. Mater. Chem., 19(48), 9260-9264. https://doi.org/10.1039/B917525C.
- Xu, Z., Golberg, D. and Bando, Y. (2009), "Electrical field-assisted thermal decomposition of boron nitride nanotube: experiments and first principle calculations", Chem. Phys. Lett., 480(1), 110-112. https://doi.org/10.1016/j.cplett.2009.08.072.
- Xu, S. and Wang, Z.L. (2011), "One-dimensional ZnO nanostructures: solution growth and functional properties", Nano Res., 4(11), 1013-1098. https://doi.org/10.1007/s12274-011-0160-7.
- Xu, S., Poirier, G. and Yao, N. (2012), "Fabrication and piezoelectric property of PMN-PT nanofibers", Nano Energy, 1(4), 602-607. https://doi.org/10.1016/j.nanoen.2012.03.011.
- Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech, 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143.
- Yan, Z. and Jiang, L. (2011a), "Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects", J. Phys. D Appl. Phys., 44(36), 365301. https://doi.org/10.1088/0022-3727/44/36/365301.
- Yan, Z. and Jiang, L. (2011b), "Surface effects on the electromechanical coupling and bending behaviors of piezoelectric nanowires", J. Phys. D Appl. Phys., 44(7), 75404. https://doi.org/10.1088/0022-3727/44/7/075404
- Yan, Z. and Jiang, L.Y. (2011c), "The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects", Nanotechnology, 22(24), 245703. https://doi.org/10.1088/0957-4484/22/24/245703.
- Yan, Z. and Jiang, L.Y. (2012a), "Surface effects on the vibration and buckling of piezoelectric nanoplates", EPL (Europhysics Letters), 99(2), 27007. https://doi.org/10.1209/0295-5075/99/27007.
- Yan, Z. and Jiang, L.Y. (2012b), "Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints", Proceedings of the Royal Society A: Mathematical, Phys. Eng. Sci., https://doi.org/10.1098/rspa.2012.0214.
- Yan, Z. (2013), "Continuum modeling on size-dependent properties of piezoelectric nanostructures", https://ir.lib.uwo.ca/etd/1322.
- Yan, Z. and Jiang, L. (2013), "Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity", J. Phys. D Appl. Phys., 46(35), 355502. https://doi.org/10.1088/0022-3727/46/35/355502
- Yazid, M., Heireche, H., Tounsi, A., Bousahla, A. A. and Houari, M. S. A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst.., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
- Ye, L., Lu, G. and Ong, L. S. (2011), "Buckling of a thin-walled cylindrical shell with foam core under axial compression", Thin-walled struct., 49(1), 106-111. https://doi.org/10.1016/j.tws.2010.08.011.
- Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A. A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065.
- Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A. A. and Mahmoud, S. R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.
- Yun, S. and Kim, J. (2011), "Mechanical, electrical, piezoelectric and electro-active behavior of aligned multi-walled carbon nanotube/cellulose composites", Carbon, 49(2), 518-527. https://doi.org/10.1016/j.carbon.2010.09.051.
- Zaoui, F. Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
- Zemri, A., Houari, M. S. A., Bousahla, A. A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693.
- Zenkour, A. M. and Sobhy, M. (2017), "Nonlocal piezo-hygrothermal analysis for vibration characteristics of a piezoelectric Kelvin-Voigt viscoelastic nanoplate embedded in a viscoelastic medium", Acta Mechanica, 1-17. https://doi.org/10.1007/s00707-017-1920-6.
- Zenkour, A. M. and Arefi, M. (2017), "Nonlocal transient electrothermomechanical vibration and bending analysis of a functionally graded piezoelectric single-layered nanosheet rest on visco-Pasternak foundation", J. Thermal Stresses, 40(2), 167-184. https://doi.org/10.1080/01495739.2016.1229146.
- Zhang, L. and Huang, H. (2006), "Young's moduli of ZnO nanoplates: Ab initio determinations", Appl. Phys. Lett., 89(18), 183111. https://doi.org/10.1063/1.2374856.
- Zhang, S., Liu, Y., Xia, M., Zhang, L., Zhang, E., Liang, R. and Zhao, S. (2008), "Long-wavelength optical phonons in single-walled boron nitride nanotubes", Physica B Condensed Matter, 403(23), 4196-4201. https://doi.org/10.1016/j.physb.2008.09.010.
- Zhang, Y., Hong, J., Liu, B. and Fang, D. (2010), "Strain effect on ferroelectric behaviors of BaTiO3 nanowires: A molecular dynamics study", Nanotechnology, 21(1), 015701. https://doi.org/10.1088/0957-4484/21/1/015701.
- Zhang, J., Wang, R. and Wang, C. (2012), "Piezoelectric ZnO-CNT nanotubes under axial strain and electrical voltage", Physica E Low Dimensional Syst. Nanostruct., 46, 105-112. https://doi.org/10.1016/j.physe.2012.09.001.
- Zhang, J. and Wang, C. (2012), "Vibrating piezoelectric nanofilms as sandwich nanoplates", J. Appl. Phys., 111(9), 094303. https://doi.org/10.1063/1.4709754.
- Zhang, L. L., Liu, J. X., Fang, X. Q. and Nie, G. Q. (2014)' "Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates", Europ. J. Mech. A/Solids, 46, 22-29. https://doi.org/10.1016/j.euromechsol.2014.01.005.
- Zheng, X. P., Cao, Y. P., Li, B., Feng, X. Q. and Wang, G. F. (2010), "Surface effects in various bending-based test methods for measuring the elastic property of nanowires", Nanotechnology, 21(20), 205702. https://doi.org/10.1088/0957-4484/21/20/205702.
- Zhi, C., Bando, Y., Tang, C. and Golberg, D. (2010), "Boron nitride nanotubes", Mater. Sci. Eng. R: Reports, 70(3), 92-111. https://doi.org/10.1126/science.269.5226.966.
- Zhou, J., Xu, N. S. and Wang, Z. L. (2006), "Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures", Adv. Mater., 18(18), 2432-2435. https://doi.org/10.1002/adma.200600200.
- Zhou, J., Wang, Z., Grots, A. and He, X. (2007), "Electric field drives the nonlinear resonance of a piezoelectric nanowire", Solid State Communications, 144(3), 118-123. https://doi.org/10.1016/j.ssc.2007.08.011.
- Zhukovskii, Y. F., Piskunov, S., Pugno, N., Berzina, B., Trinkler, L. and Bellucci, S. (2009), "Ab initio simulations on the atomic and electronic structure of single-walled BN nanotubes and nanoarches", J. Phys. Chem. Solids, 70(5), 796-803. https://doi.org/10.1016/j.jpcs.2009.03.016.
- Zidi, M., Houari, M. S. A., Tounsi, A., Bessaim, A. and Mahmoud, S. R. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., 64(2), 145-153. https://doi.org/10.12989/sem.2017.64.2.145.
피인용 문헌
- Propagation of Pore Pressure and Stress in Saturated Porous Media Based on a Darcy-Brinkman Formulation vol.2021, 2021, https://doi.org/10.1155/2021/1301044