참고문헌
- Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11, 403-421. https://doi.org/10.12989/scs.2011.11.5.403.
- Aydogdu, M., Aksencer, T. (2018), "Buckling of cross-ply composite plates with linearly varying In-plane loads", Compos. Struct., 183, 221-231. https://doi.org/10.1016/j.compstruct.2017.02.085.
- Baucke, A., Mittelstedt, C. (2015), "Closed-form analysis of the buckling loads of composite laminates under uniaxial compressive load explicitly accounting for bending-twisting-coupling", Compos. Struct., 128, 437-454. https://doi.org/10.1016/j.compstruct.2014.12.054.
- Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z., Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66, 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
- Bohlooly, M., Malekzadeh Fard, K. (2019), "Buckling and postbuckling of concentrically stiffened piezo-composite plates on elastic foundations", J. Appl. Comput. Mech., 5, 128-140. https://dx.doi.org/10.22055/jacm.2018.25539.1277.
- Bohlooly, M., Mirzavand, B. (2015), "Closed form solutions for buckling and postbuckling analysis of imperfect laminated composite plates with piezoelectric actuators", Compos. Part B Eng., 72, 21-29. https://doi.org/10.1016/j.compositesb.2014.10.049.
- Bohlooly, M., Mirzavand, B. (2016), "A closed-form solution for thermal buckling of cross-ply piezolaminated plates", J. Struct. Stability Dynam. 16, 1450112. https://doi.org/10.1142/S0219455414501120.
- Bohlooly, M., Mirzavand, B. (2017), "Thermomechanical buckling of hybrid cross-ply laminated rectangular plates", Adv. Compos. Mater., 26, 407-426. https://doi.org/10.1080/09243046.2016.1197492.
- Bohlooly, M., Mirzavand, B. (2018), "Postbuckling and deflection response of imperfect piezo-composite plates resting on elastic foundations under in-plane and lateral compression and electro-thermal loading", Mech. Adv. Mater. Struct., 25, 192-201. https://doi.org/10.1080/15376494.2016.1255818.
- Bohlooly, M., Mirzavand, B., Fard, K.M. (2018), "An analytical approach for postbuckling of eccentrically or concentrically stiffened composite double curved panel on nonlinear elastic foundation", Appl. Math. Modell., 62, 415-435. https://doi.org/10.1016/j.apm.2018.06.008.
- Brush, D.O., Almroth, B.O. and Hutchinson, J. (1975), "Buckling of bars, plates, and shells", J. Appl. Mech., 42, 911. https://doi.org/10.1115/1.3423754.
- Cetkovic, M. and Vuksanovic, D. (2011), "Large deflection analysis of laminated composite plates using layerwise displacement model", Struct. Eng. Mech., 40, 257-277. https://doi.org/10.12989/sem.2011.40.2.257.
- Civalek, O. and Acar, M.H. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", J. Pressure Vessels Piping, 84, 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001.
- Dietrich, L., Kawahara, W., Phillips, A. (1978), "An experimental study of plastic buckling of a simply supported plate under edge thrusts", Acta Mechanica, 29, 257-267. https://doi.org/10.1007/BF01176641.
- Fard, K.M., Bohlooly, M. (2017), "Postbuckling of piezolaminated cylindrical shells with eccentrically/concentrically stiffeners surrounded by nonlinear elastic foundations", Compos. Struct., 171, 360-369. https://doi.org/10.1016/j.compstruct.2017.03.058.
- Feng, K., Xu, J. (2016), "Buckling Analysis of Composite Cylindrical Shell Panels by Using Legendre Polynomials Hierarchical Finite-Strip Method", J. Eng. Mech., 143, 04016121. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001181.
- Ghasemabadian, M., Saidi, A. (2017), "Stability analysis of transversely isotropic laminated Mindlin plates with piezoelectric layers using a Levy-type solution", Struct. Eng. Mech., 62, 675-693. https://doi.org/10.12989/sem.2017.62.6.675.
- Golmakani, M. and Far, M.S. (2017), "Buckling analysis of biaxially compressed double-layered graphene sheets with various boundary conditions based on nonlocal elasticity theory", Microsyst. Technol., 23, 2145-2161. https://doi.org/10.1007/s00542-016-3053-6.
- Gunda, J.B. (2013), "Thermal post-buckling analysis of square plates resting on elastic foundation: A simple closed-form solutions", Appl. Math. Modell., 37, 5536-5548. https://doi.org/10.1016/j.apm.2012.09.031.
- Hosseini-Hashemi, S., Kermajani, M., Nazemnezhad, R. (2015), "An analytical study on the buckling and free vibration of rectangular nanoplates using nonlocal third-order shear deformation plate theory", Europ. J. Mech. A/Solids, 51, 29-43. https://doi.org/10.1016/j.euromechsol.2014.11.005.
- Iyengar, K.S.R. and Karasimhan, K. (1965), "Buckling of rectangular plates with clamped and simply-supported edges", Publications de l'Institut Mathematique, 19, 31-40.
- Jin, G., Su, Z., Shi, S., Ye, T., Gao, S. (2014), "Three-dimensional exact solution for the free vibration of arbitrarily thick functionally graded rectangular plates with general boundary conditions", Compos. Struct., 108, 565-577. https://doi.org/10.1016/j.compstruct.2013.09.051.
- Khov, H., Li, W.L., Gibson, R.F. (2009), "An accurate solution method for the static and dynamic deflections of orthotropic plates with general boundary conditions", Compos. Struct., 90, 474-481. https://doi.org/10.1016/j.compstruct.2009.04.020.
- Kiani, Y. (2017), "Buckling of FG-CNT-reinforced composite plates subjected to parabolic loading", Acta Mechanica, 228, 1303-1319. https://doi.org/10.1007/s00707-016-1781-4.
- Latifi, M., Farhatnia, F. and Kadkhodaei, M. (2013), "Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion", Europ. J. Mech. A/Solids, 41, 16-27. https://doi.org/10.1016/j.euromechsol.2013.01.008.
- Li, Q. and Pan Iu, V. (2010), "Three-Dimensional Buckling Analysis of Rectangular Plates with In-Plane Compressive Loads", AIP Conference Proceedings, 674-677. https://doi.org/10.1063/1.3452256.
- Li, W.L. (2000), "Free vibrations of beams with general boundary conditions", J. Sound Vib., 237, 709-725. https://doi.org/10.1006/jsvi.2000.3150.
- Li, W.L. (2004), "Vibration analysis of rectangular plates with general elastic boundary supports", J. Sound Vib., 273, 619-635. https://doi.org/10.1016/S0022-460X(03)00562-5.
- Liew, K., Xiang, Y., Kitipornchai, S. (1996), "Analytical buckling solutions for Mindlin plates involving free edges", J. Mech. Sci., 38, 1127-1138. https://doi.org/10.1016/0020-7403(95)00108-5.
- Liu, G., Chen, X., Reddy, J. (2002), "Buckling of symmetrically laminated composite plates using the element-free Galerkin method", J. Struct. Stability Dynam. 2, 281-294. https://doi.org/10.1142/S0219455402000634.
- Lopatin, A., Morozov, E. (2009), "Buckling of the SSFF rectangular orthotropic plate under in-plane pure bending", Compos. Struct., 90, 287-294. https://doi.org/10.1016/j.compstruct.2009.03.006.
- Matsunaga, H. (2005), "Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory", Compos. Struct., 68, 439-454. https://doi.org/10.1016/j.compstruct.2004.04.010.
- Mijuskovic, O., Coric, B., Scepanovic, B. (2014), "Exact stress functions implementation in stability analysis of plates with different boundary conditions under uniaxial and biaxial compression", Thin-Walled Struct., 80, 192-206. https://doi.org/10.1016/j.tws.2014.03.006.
- Mijuskovic, O., Coric, B., Scepanovic, B. (2015), "Accurate buckling loads of plates with different boundary conditions under arbitrary edge compression", J. Mech. Sci.,101, 309-323. https://doi.org/10.1016/j.ijmecsci.2015.07.017.
- Mirzaei, M. and Kiani, Y. (2016), "Thermal buckling of temperature dependent FG-CNT reinforced composite plates", 51, 2185-2201. https://doi.org/10.1007/s11012-015-0348-0.
- Mirzavand, B. and Bohlooly, M. (2015), "Thermal buckling of piezolaminated plates subjected to different loading conditions", J. Thermal Stresses, 38, 1138-1162. https://doi.org/10.1080/01495739.2015.1073506.
- Mirzavand, B., Bohlooly, M. (2019), "Higher-Order Stability Analysis of Imperfect Laminated Piezo-Composite Plates on Elastic Foundations Under Electro-Thermo-Mechanical Loads", J. Solid Mech., 11, 550-569. https://doi.org/10.22034/JSM.2019.666689.
- Nosier, A., Kapania, R., Reddy, J. (1994), "Low-velocity impact of laminated composites using a layerwise theory", Comput. Mech., 13, 360-379. https://doi.org/10.1007/BF00512589.
- Panda, S.K., Ramachandra, L. (2010), "Buckling of rectangular plates with various boundary conditions loaded by non-uniform inplane loads", J. Mech. Sci.,52, 819-828. https://doi.org/10.1016/j.ijmecsci.2010.01.009.
- Qu, Y., Hua, H., Meng, G. (2013), "A domain decomposition approach for vibration analysis of isotropic and composite cylindrical shells with arbitrary boundaries", Compos. Struct., 95, 307-321. https://doi.org/10.1016/j.compstruct.2012.06.022.
- Raju, G., Wu, Z., Kim, B.C., Weaver, P.M. (2012), "Prebuckling and buckling analysis of variable angle tow plates with general boundary conditions", Compos. Struct., 94, 2961-2970. https://doi.org/10.1016/j.compstruct.2012.04.002.
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press, Florida, U.S.A.
- Shufrin, I., Rabinovitch, O. and Eisenberger, M. (2008a), "Buckling of laminated plates with general boundary conditions under combined compression, tension, and shear-A semi-analytical solution", Thin-Walled Structures, 46, 925-938. https://doi.org/10.1016/j.tws.2008.01.040.
- Shufrin, I., Rabinovitch, O., Eisenberger, M. (2008b), "Buckling of symmetrically laminated rectangular plates with general boundary conditions-A semi analytical approach", Compos. Struct., 82, 521-531. https://doi.org/10.1016/j.compstruct.2007.02.003.
- Shukla, K., Nath, Y., Kreuzer, E., Kumar, K. (2005), "Buckling of laminated composite rectangular plates", J. Aerosp. Eng., 18, 215-223. https://doi.org/10.1061/(ASCE)0893-1321(2005)18:4(215).
- Singhatanadgid, P., Jommalai, P. (2016), "Buckling analysis of laminated plates using the extended Kantorovich method and a system of first-order differential equations", J. Mech. Sci. Technol., 30, 2121-2131. https://doi.org/10.1007/s12206-016-0419-8.
- Song, X., Cao, T., Gao, P., Han, Q. (2020), "Vibration and damping analysis of cylindrical shell treated with viscoelastic damping materials under elastic boundary conditions via a unified Rayleigh-Ritz method", J. Mech. Sci.,165, 105158. https://doi.org/10.1016/j.ijmecsci.2019.105158.
- Song, X., Han, Q., Zhai, J. (2015), "Vibration analyses of symmetrically laminated composite cylindrical shells with arbitrary boundaries conditions via Rayleigh-Ritz method", Compos. Struct., 134, 820-830. https://doi.org/10.1016/j.compstruct.2015.08.134.
- Swaminathan, K., Naveenkumar, D. (2014), "Higher order refined computational models for the stability analysis of FGM plates- Analytical solutions", Europ. J. Mech. A/Solids, 47, 349-361. https://doi.org/10.1016/j.euromechsol.2014.06.003.
- Tamijani, A.Y., Kapania, R.K. (2012), "Chebyshev-ritz approach to buckling and vibration of curvilinearly stiffened plate", AIAA J., 50, 1007-1018. https://doi.org/10.2514/1.J050042.
- Tang, Y., Wang, X. (2011), "Buckling of symmetrically laminated rectangular plates under parabolic edge compressions", Int. J. Mech. Sci., 53, 91-97. https://doi.org/10.1016/j.ijmecsci.2010.11.005.
- Thai, H.-T., Kim, S.-E. (2011), "Levy-type solution for buckling analysis of orthotropic plates based on two variable refined plate theory", Compos. Struct., 93, 1738-1746. https://doi.org/10.1016/j.compstruct.2011.01.012.
- Ungbhakorn, V., Singhatanadgid, P. (2006), "Buckling analysis of symmetrically laminated composite plates by the extended Kantorovich method", Compos. Struct., 73, 120-128. https://doi.org/10.1016/j.compstruct.2005.02.007.
- Uymaz, B., Aydogdu, M. (2013a), "Three dimensional mechanical buckling of FG plates with general boundary conditions", Compos. Struct., 96, 174-193. https://doi.org/10.1016/j.compstruct.2012.07.033.
- Uymaz, B., Aydogdu, M. (2013b), "Three dimensional shear buckling of FG plates with various boundary conditions", Compos. Struct., 96, 670-682. https://doi.org/10.1016/j.compstruct.2012.08.031
- Wang, C., Zhang, H., Challamel, N., Duan, W. (2017), "On boundary conditions for buckling and vibration of nonlocal beams", Europ. J. Mech. A/Solids, 61, 73-81. https://doi.org/10.1016/j.euromechsol.2016.08.014.
- Xiang, Y., Liew, K., Kitipornchai, S. (1996), "Exact buckling solutions for composite laminates: proper free edge conditions under in-plane loadings", Acta Mechanica, 117, 115-128. https://doi.org/10.1007/BF01181041
- Yu, L., Wang, C. (2008), "Buckling of rectangular plates on an elastic foundation using the Levy method", AIAA J., 46, 3163-3167. https://doi.org/10.2514/1.37166.
- Zhang, X., Li, W.L. (2009), "Vibrations of rectangular plates with arbitrary non-uniform elastic edge restraints", J. Sound Vib., 326, 221-234. https://doi.org/10.1016/j.jsv.2009.04.021.