DOI QR코드

DOI QR Code

The effect of embedding a porous core on the free vibration behavior of laminated composite plates

  • Safaei, Babak (Department of Mechanical Engineering, Eastern Mediterranean University)
  • 투고 : 2020.03.07
  • 심사 : 2020.05.16
  • 발행 : 2020.06.10

초록

This paper proposes the use of a porous core between layers of laminated composite plates to examine its effect on the natural frequencies of the resulted porous laminated composite sandwich plate (PLCSP) resting on a two-parameter elastic foundation. Moreover, it has been suggested that the dispersion of porosity has two different functionally graded (FG) patterns which are compared with a uniformly dispersed (UD) profile to find their best vibrational efficiency in the proposed PLCSPs. In FG patterns, two types of dispersions, including symmetric (FG-S) and asymmetric (FG-A) patterns have been considered. To derive the governing Eigen value equation of such structures, the first order shear deformation theory (FSDT) of plates has been employed. Accordingly, a finite element method (FEM) is developed to solve the derived Eigen value equation. Using the mentioned theory and method, the effects of porosity parameters, fiber orientation of laminated composite, geometrical dimensions, boundary conditions and elastic foundation on the natural frequencies of the proposed PLCSPs have been studied. It is observed that embedding porosity in core layer leads to a significant improvement in the natural frequencies of PLCSPs. Moreover, the natural frequencies of PLCSPs with FG porous core are higher than those with UD porous core.

키워드

참고문헌

  1. Askari, M., Saidi, A.R. and Rezaei, A.S. (2018), "An investigation over the effect of piezoelectricity and porosity distribution on natural frequencies of porous smart plates", J. Sandw. Struct. Mater., doi: 10.1177/1099636218791092.
  2. Babaei, A., Noorani, M.R.S. and Ghanbari, A. (2017), "Temperature-dependent free vibration analysis of functionally graded micro-beams based on the modified couple stress theory", Microsyst. Technol., 23(10), 4599-4610. doi: 10.1007/s00542-017-3285-0.
  3. Babaei, A. and Rahmani, A. (2018), "On dynamic-vibration analysis of temperature-dependent Timoshenko microbeam possessing mutable nonclassical length scale parameter", Mech. Adv. Mater. Struct., doi: 10.1080/15376494.2018.1516252.
  4. Baferani, A.H., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. doi: https://doi.org/10.1016/j.compstruct.2011.01.020.
  5. Barati, M.R. and Zenkour, A.M. (2018), "Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions", J. Vib. Control, 24(10), 1910-1926. doi: 10.1177/1077546316672788.
  6. Behdinan, K., Moradi-Dastjerdi, R., Safaei, B., Qin, Z., Chu, F. and Hui, D. (2020), "Graphene and CNT impact on heat transfer response of nanocomposite cylinders", Nanotechnol. Rev., 9, 41-52. Available at: https://doi.org/10.1515/ntrev-2020-0004.
  7. Benhenni, M.A., Daouadji, T.H., Abbes, B., Abbes, F., Li, Y. and Adim, B. (2019), "Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions", Struct. Eng. Mech., 70(5), 535-549. doi: 10.12989/sem.2019.70.5.535.
  8. Bisheh, H.K. and Wu, N. (2018), "Wave propagation characteristics in a piezoelectric coupled laminated composite cylindrical shell by considering transverse shear effects and rotary inertia", Compos. Struct., 191, 123-144. doi: 10.1016/j.compstruct.2018.02.010.
  9. Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-Wall. Struct., 107, 39-48. doi: 10.1016/j.tws.2016.05.025.
  10. Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", Aerosp. Sci. Technol., 77, 419-428. doi: 10.1016/j.ast.2018.03.020.
  11. Deville, S. (2008), "Freeze-casting of porous ceramics: A review of current achievements and issues", Adv. Eng. Mater., 155-169. doi: 10.1002/adem.200700270.
  12. Dong, Y.H., Li, Y.H., Chen, D. and Yang, J. (2018), "Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion", Compos. Part B Eng., 145, 1-13. doi: 10.1016/j.compositesb.2018.03.009.
  13. Fattahi, A.M., Safaei, B. and Moaddab, E. (2019a), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281.
  14. Fattahi, A.M., Safaei, B. and Ahmed, N.A. (2019b), "A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets", Eur. Phys. J. Plus, 134(11), 555. doi: 10.1140/epjp/i2019-12912-7.
  15. Ghanati, P. and Safaei, B. (2019), "Elastic buckling analysis of polygonal thin sheets under compression", Indian J. Phys., 93(1), 47-52. doi: 10.1007/s12648-018-1254-9.
  16. Jabbari, M., Joubaneh, E.F., Khorshidvand, A.R. and Eslami, M.R. (2013), "Buckling analysis of porous circular plate with piezoelectric actuator layers under uniform radial compression", Int. J. Mech. Sci., 70, 50-56. doi: 10.1016/j.ijmecsci.2013.01.031.
  17. Jalali, M.H., Shahriari, B., Zargar, O., Baghani, M. and Baniassadi, M. (2018), "Free vibration analysis of rotating functionally graded annular disc of variable thickness using generalized differential quadrature method", Sci. Iran., 25(2), 728-740. doi: 10.24200/SCI.2017.4325.
  18. Jalali, M.H., Zargar, O. and Baghani, M. (2018), "Size-dependent vibration analysis of FG microbeams in thermal environment based on modified couple stress theory", Iran. J. Sci. Technol. Trans. Mech. Eng. doi: 10.1007/s40997-018-0193-6.
  19. Javed, S., Viswanathan, K.K., Izyan, M.D.N., Aziz, Z.A. and Lee, J.H. (2018), "Free vibration of cross-ply laminated plates based on higher-order shear deformation theory", Steel Compos. Struct., 26(4), 473-484. https://doi.org/10.12989/scs.2018.26.4.473.
  20. Li, Q., Wu, D., Chen, X., Liu, L., Yu, Y. and Gao, W. (2018), "Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation", Int. J. Mech. Sci., 148, 596-610. doi: 10.1016/J.IJMECSCI.2018.09.020.
  21. Li, Q., Xie, B., Sahmani, S. and Safaei, B. (2020), "Surface stress effect on the nonlinear free vibrations of functionally graded composite nanoshells in the presence of modal interaction", J. Brazilian Soc. Mech. Sci. Eng., 42(5), 237. doi: 10.1007/s40430-020-02317-2.
  22. Liu, T., Wang, A., Wang, Q. and Qin, B. (2020), "Wave based method for free vibration characteristics of functionally graded cylindrical shells with arbitrary boundary conditions", Thin-Wall. Struct., 148. doi: 10.1016/j.tws.2019.106580.
  23. Malekzadeh, P., Fiouz, A.R. and Razi, H. (2009), "Three-dimensional dynamic analysis of laminated composite plates subjected to moving load", Compos. Struct., 90(2), 105-114. doi: 10.1016/j.compstruct.2009.02.008.
  24. Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", Int. J. Solids Struct., 49(1), 43-53. doi: 10.1016/j.ijsolstr.2011.09.008.
  25. Mohammadi, M., Bamdad, M., Alambeigi, K., Dimitri, R. and Tornabene, F. (2019), "Electro-elastic response of cylindrical sandwich pressure vessels with porous core and piezoelectric face-sheets", Compos. Struct., 225, 111119. doi: 10.1016/J.COMPSTRUCT.2019.111119.
  26. Mohammadsalehi, M., Zargar, O. and Baghani, M. (2017), "Study of non-uniform viscoelastic nanoplates vibration based on nonlocal first-order shear deformation theory", Meccanica, 52, 1063-1077. doi: 10.1007/s11012-016-0432-0.
  27. Moradi-Dastjerdi, R., Payganeh, G., Rajabizadeh Mirakabad, S. and Jafari Mofrad Taheri, M. (2016), "Static and free vibration analyses of functionally graded nano- composite plates reinforced by wavy carbon nanotubes resting on a pasternak elastic foundation", Mech. Adv. Compos. Struct., 3, 123-135. doi: 10.22075/macs.2016.474.
  28. Moradi-Dastjerdi, R. and Behdinan, K. (2019), "Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene", Steel Compos. Struct., 31(5), 529-539. https://doi.org/10.12989/scs.2019.31.5.529.
  29. Moradi-Dastjerdi, R. and Behdinan, K. (2020a), "Stability analysis of multifunctional smart sandwich plates with graphene nanocomposite and porous layers", Int. J. Mech. Sci., 167, 105283. doi: 10.1016/j.ijmecsci.2019.105283.
  30. Moradi-Dastjerdi, R. and Behdinan, K. (2020b), "Temperature effect on free vibration response of a smart multifunctional sandwich plate", J. Sandw. Struct. Mater., DOI: 10.1177/1099636220908707. Available at: https://doi.org/10.1177/1099636220908707.
  31. Moradi-Dastjerdi, R., Malek-Mohammadi, H. and Momeni-Khabisi, H. (2017), "Free vibration analysis of nanocomposite sandwich plates reinforced with CNT aggregates", ZAMM - J. Appl. Math. Mech. / Zeitschrift fur Angew. Math. und Mech., 97(11), 1418-1435. doi: 10.1002/zamm.201600209.
  32. Moradi-Dastjerdi, R., Meguid, S.A. and Rashahmadi, S. (2019), "Electro-dynamic analysis of smart nanoclay-reinforced plates with integrated piezoelectric layers", Appl. Math. Model., 75, 267-278. doi: 10.1016/j.apm.2019.05.033.
  33. Moradi-Dastjerdi, R. and Payganeh, G. (2017a), "Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads", Steel Compos. Struct., 25(3), 315-326. https://doi.org/10.12989/scs.2017.25.3.315.
  34. Moradi-Dastjerdi, R. and Payganeh, G. (2017b), "Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions", Steel Compos. Struct., 24(3), 359-367. https://doi.org/10.12989/scs.2017.24.3.359.
  35. Moradi-Dastjerdi, R. and Payganeh, G. (2018), "Thermoelastic Vibration Analysis of Functionally Graded Wavy Carbon Nanotube-Reinforced Cylinders", Polym. Compos., 39(S2), E826-E834. doi: 10.1002/pc.24278.
  36. Moradi-Dastjerdi, R., Payganeh, G. and Tajdari, M. (2017), "Resonance in Functionally Graded Nanocomposite Cylinders Reinforced by Wavy Carbon Nanotube", Polym. Compos., 38, E542-E552. doi: 10.1002/pc.24045.
  37. Moradi-Dastjerdi, R., Payganeh, G. and Tajdari, M. (2018), "Thermoelastic Analysis of Functionally Graded Cylinders Reinforced by Wavy CNT Using a Mesh-Free Method", Polym. Compos., 39(7), 2190-2201. doi: 10.1002/pc.24183.
  38. Moradi-Dastjerdi, R., Radhi, A. and Behdinan, K. (2020c), "Damped dynamic behavior of an advanced piezoelectric sandwich plate", Compos. Struct., 112243. doi: 10.1016/j.compstruct.2020.112243.
  39. Nguyen, N.V., Lee, J. and Nguyen-Xuan, H. (2019), "Active vibration control of GPLs-reinforced FG metal foam plates with piezoelectric sensor and actuator layers", Compos. Part B Eng., 172, 769-784. doi: 10.1016/J.COMPOSITESB.2019.05.060.
  40. Nguyen, N.V, Nguyen, H.X., Lee, S. and Nguyen-xuan, H. (2018), "Geometrically nonlinear polygonal finite element analysis of functionally graded porous plates", Adv. Eng. Softw., 126, 110-126. doi: 10.1016/j.advengsoft.2018.11.005.
  41. Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded graphene reinforced porous nanocomposite curved beams : Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. Part B, 166, 310-327. doi: 10.1016/j.compositesb.2018.11.074.
  42. Pourasghar, A., Moradi-Dastjerdi, R., Yas, M.H., Ghorbanpour Arani, A. and Kamarian, S. (2018), "Three-dimensional analysis of carbon nanotube- reinforced cylindrical shells with temperature- dependent properties under thermal environment", Polym. Compos., 39(4), 1161-1171. doi: 10.1002/pc.24046.
  43. Pourasghar, A. and Chen, Z. (2019a), "Dual-phase-lag heat conduction in FG carbon nanotube reinforced polymer composites", Phys. B Condens. Matter, 564, 147-156. doi: 10.1016/j.physb.2019.03.038.
  44. Pourasghar, A. and Chen, Z. (2019b), "Effect of hyperbolic heat conduction on the linear and nonlinear vibration of CNT reinforced size-dependent functionally graded microbeams", Int. J. Eng. Sci., 137, 57-72. doi: 10.1016/j.ijengsci.2019.02.002.
  45. Pourasghar, A. and Chen, Z. (2019c) "Hyperbolic heat conduction and thermoelastic solution of functionally graded CNT reinforced cylindrical panel subjected to heat pulse", Int. J. Solids Struct., 163, 117-129. Available at: https://doi.org/10.1016/j.ijsolstr.2018.12.030.
  46. Pourasghar, A. and Chen, Z. (2019d), "Nonlinear vibration and modal analysis of FG nanocomposite sandwich beams reinforced by aggregated CNTs", Polym. Eng. Sci., 59(7), 1362-1370. doi: 10.1002/pen.25119.
  47. Qin, Z., Yang, Z., Zu, J. and Chu, F. (2018), "Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates", Int. J. Mech. Sci., 142-143, 127-139. doi: 10.1016/j.ijmecsci.2018.04.044.
  48. Qin, Z., Safaei, B., Pang, X. and Chu, F. (2019), "Traveling wave analysis of rotating functionally graded graphene platelet reinforced nanocomposite cylindrical shells with general boundary conditions", Results Phys., 15, 102752. doi: 10.1016/j.rinp.2019.102752.
  49. Qin, Z., Zhao, S., Pang, X., Safaei, B. and Chu, F. (2020), "A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions", Int. J. Mech. Sci., 170, 105341. doi: https://doi.org/10.1016/j.ijmecsci.2019.105341.
  50. Reddy, J.N. (2004), 'Mechanics of Laminated Composite Plates and Shells: Theory and Analysis'.
  51. Safaei, B., Naseradinmousavi, P. and Rahmani, A. (2016), "Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression", J. Mol. Graph. Model., 65, 43-60. doi: 10.1016/j.jmgm.2016.02.001.
  52. Safaei, B., Moradi-Dastjerdi, R. and Chu, F. (2018a), "Effect of thermal gradient load on thermo-elastic vibrational behavior of sandwich plates reinforced by carbon nanotube agglomerations", Compos. Struct., 192, 28-37. doi: 10.1016/j.compstruct.2018.02.022.
  53. Safaei, B., Fattahi, A.M. and Chu, F. (2018b), "Finite element study on elastic transition in platelet reinforced composites", Microsyst. Technol., 24(6), 2663-2671. doi: 10.1007/s00542-017-3651-y.
  54. Safaei, B., Moradi-Dastjerdi, Rasool, Qin, Z. and Chu, F. (2019a), "Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads", Compos. Part B Eng., 161, 44-54. doi: 10.1016/j.compositesb.2018.10.049.
  55. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019b), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. doi: 10.12989/anr.2019.7.4.265.
  56. Safaei, B., Ahmed, N.A. and Fattahi, A.M. (2019c), "Free vibration analysis of polyethylene/CNT plates", Eur. Phys. J. Plus, 134, 271. doi: 10.1140/epjp/i2019-12650-x.
  57. Safaei, B., Moradi-Dastjerdi, Rasool, Qin, Z., Behdinan, K. and Chu, F. (2019d), "Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes", J. Sandw. Struct. Mater., doi: 10.1177/109963621984828. doi: 10.1177/1099636219848282.
  58. Safaei, B., Moradi-Dastjerdi, R., Behdinan, K. and Chu, F. (2019c) "Critical buckling temperature and force in porous sandwich plates with CNT-reinforced nanocomposite layers", Aerosp. Sci. Technol., 91, 175-185. doi: 10.1016/j.ast.2019.05.020.
  59. Safaei, B., Moradi-Dastjerdi, R., Behdinan, K., Qin, Z. and Chu, F. (2019f), "Thermoelastic behavior of sandwich plates with porous polymeric core and CNT clusters/polymer nanocomposite layers", Compos. Struct., 226, 111209. doi: 10.1016/J.COMPSTRUCT.2019.111209.
  60. Sahmani, S. and Safaei, B. (2020), "Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams", Appl. Math. Model., 82, 336-358. doi: 10.1016/j.apm.2020.01.051.
  61. Sciamanna, V., Nait-Ali, B. and Gonon, M. (2015), "Mechanical properties and thermal conductivity of porous alumina ceramics obtained from particle stabilized foams", Ceram. Int., 41(2), 2599-2606. doi: 10.1016/j.ceramint.2014.10.011.
  62. Sehoul, M., Benguediab, M., Bakora, A. and Tounsi, A. (2017), "Free vibrations of laminated composite plates using a novel four variable refined plate theory", Steel Compos. Struct., 24(5), 603-613. https://doi.org/10.12989/scs.2017.24.5.603.
  63. Setoodeh, A.R., Malekzadeh, P. and Nikbin, K. (2009), "Low velocity impact analysis of laminated composite plates using a 3D elasticity based layerwise FEM", Mater. Des., 30(9), 3795-3801. doi: 10.1016/j.matdes.2009.01.031.
  64. Setoodeh, A.R., Shojaee, M. and Malekzadeh, P. (2019), "Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core", Compos. Part B Eng., 165, 798-822. doi: 10.1016/J.COMPOSITESB.2019.01.022.
  65. Sharma, N., Mahapatra, T.R., Panda, S.K. and Mehar, K. (2018) "Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model", Steel Compos. Struct., 28(5), 629-639. doi: 10.12989/scs.2018.28.5.629.
  66. Studart, A.R., Gonzenbach, U.T., Tervoort, E. and Gauckler, L.J. (2006), "Processing routes to macroporous ceramics: A review", J. Am. Ceram. Soc., 1771-1789. doi: 10.1111/j.1551-2916.2006.01044.x.
  67. Talebitooti, R., Daneshjoo, K. and Jafari, S.A.M. (2016), "Optimal control of laminated plate integrated with piezoelectric sensor and actuator considering TSDT and meshfree method", Eur. J. Mech. A/Solids, 55, 199-211. doi: 10.1016/j.euromechsol.2015.09.004.
  68. Thai, C.H., Ferreira, A.J.M., Carrera, E. and Nguyen-Xuan, H. (2013), "Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory", Compos. Struct., 104, 196-214. doi: 10.1016/J.COMPSTRUCT.2013.04.002.
  69. Thai, H. and Choi, D. (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compos. Sci. Technol., 71(16), 1850-1858. doi: 10.1016/j.compscitech.2011.08.016.
  70. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Reddy, J.N. (2017), "A posteriori stress and strain recovery procedure for the static analysis of laminated shells resting on nonlinear elastic foundation", Compos. Part B Eng., 126, 162-191. doi: 10.1016/J.COMPOSITESB.2017.06.012.
  71. Tornabene, F., Viola, E. and Fantuzzi, N. (2013), "General higher-order equivalent single layer theory for free vibrations of doubly-curved laminated composite shells and panels", Compos. Struct., 104, 94-117. https://doi.org/10.1016/j.compstruct.2013.04.009
  72. Vinson, J.R. (2001), "Sandwich Structures", Appl. Mech. Rev., 54(3), 201. doi: 10.1115/1.3097295.
  73. Wang, Y.Q. (2014), "Nonlinear vibration of a rotating laminated composite circular cylindrical shell: Traveling wave vibration", Nonlinear Dyn., 77(4), 1693-1707. doi: 10.1007/s11071-014-1410-5.
  74. Wang, Z., Yu, T., Bui, T.Q., Trinh, N.A., Luong, N.T.H., Duc, N.D. and Doan, D.H. (2016), "Numerical modeling of 3-D inclusions and voids by a novel adaptive XFEM", Adv. Eng. Softw., 102, 105-122. doi: 10.1016/j.advengsoft.2016.09.007.
  75. Wu, X., Lu, C., Xu, H., Zhang, X. and Zhou, Z. (2014), "Biotemplate synthesis of polyaniline@cellulose nanowhiskers/natural rubber nanocomposites with 3D hierarchical multiscale structure and improved electrical conductivity", ACS Appl. Mater. Interfaces, 6(23), 21078-21085. doi: 10.1021/am505924z.
  76. Xiaohui, R., Zhen, W. and Bin, J. (2018), "A refined sinusoidal theory for laminated composite and sandwich plates", Mech. Adv. Mater. Struct. doi: 10.1080/15376494.2018.1538469.
  77. Xie, B., Sahmani, S., Safaei, B. and Xu, B. (2020) "Nonlinear secondary resonance of FG porous silicon nanobeams under periodic hard excitations based on surface elasticity theory", Eng. Comput., doi: 10.1007/s00366-019-00931-w.
  78. Xu, K., Yuan, Y. and Li, M. (2019), "Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets", Steel Compos. Struct., 32(5), 633-642. https://doi.org/10.12989/scs.2019.32.5.633.
  79. Xue, Y., Jin, G., Ma, X., Chen, H., Ye, T., Chen, M. and Zhang, Y. (2019), "Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach", Int. J. Mech. Sci., 152, 346-362. doi: 10.1016/j.ijmecsci.2019.01.004.
  80. Yan, D.X., Ren, P.G., Pang, H., Fu, Q., Yang, M.B. and Li, Z.M. (2012) "Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite", J. Mater. Chem., 22(36), 18772-18774. doi: 10.1039/c2jm32692b.
  81. Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. doi: 10.1016/J.COMPSTRUCT.2018.03.090.
  82. Yang, X., Sahmani, S. and Safaei, B. (2020), "Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects", Eng. Comput., doi: 10.1007/s00366-019-00901-2.
  83. Yi, H., Sahmani, S. and Safaei, B. (2020), "On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions", Arch. Civ. Mech. Eng., 20(2), 48. doi: 10.1007/s43452-020-00047-9.
  84. Yu, T., Yin, S., Bui, T.Q., Xia, S., Tanaka, S. and Hirose, S. (2016), "NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method", Thin Wall. Struct., 101, 141-156. doi: 10.1016/j.tws.2015.12.008.
  85. Yuan, Y., Zhao, K., Sahmani, S. and Safaei, B. (2020), "Size-dependent shear buckling response of FGM skew nanoplates modeled via different homogenization schemes", Appl. Math. Mech., 1-18. doi: 10.1007/s10483-020-2600-6.
  86. Zargar, O., Mollaghaee-Roozbahani, M., Bashirpour, M. and Baghani, M. (2019), "The application of Homotopy Analysis Method to determine the thermal response of convective-radiative porous fins with temperature-dependent properties", Int. J. Appl. Mech., doi: 10.1142/s1758825119500881.
  87. Zargar, O., Masoumi, A. and Moghaddam, A.O. (2017), "Investigation and optimization for the dynamical behaviour of the vehicle structure", Int. J. Automot. Mech. Eng., 14, 4196-4210. doi: 10.15282/ijame.14.2.2017.7.0336.
  88. Zhang H., et al. (2020), "Study on vibro-acoustic property of composite laminated rotary plate-cavity system based on a simplified plate theory and experimental method",. Int. J. Mech. Sci., 167, 105264. DOI: 10.1016/j.ijmecsci.2019.105264.
  89. Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019a), "Dynamics analysis of functionally graded porous ( FGP ) circular , annular and sector plates with general elastic restraints", Compos. Part B, 159, 20-43. doi: 10.1016/j.compositesb.2018.08.114.
  90. Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019b), "Vibration behavior of the functionally graded porous ( FGP ) doubly-curved panels and shells of revolution by using a semi-analytical method", Compos. Part B, 157, 219-238. doi: 10.1016/j.compositesb.2018.08.087.

피인용 문헌

  1. Confinement effectiveness of Timoshenko and Euler Bernoulli theories on buckling of microfilaments vol.11, pp.1, 2021, https://doi.org/10.12989/acc.2021.11.1.081
  2. Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites vol.38, pp.2, 2020, https://doi.org/10.12989/scs.2021.38.2.177
  3. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.271
  4. On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
  5. Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces vol.136, pp.6, 2020, https://doi.org/10.1140/epjp/s13360-021-01632-4
  6. Nonlinear Damping and Forced Response of Laminated Composite Cylindrical Shells with Inherent Material Damping vol.13, pp.5, 2020, https://doi.org/10.1142/s1758825121500605
  7. Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157
  8. Calcium carbonate nanoparticles effects on cement plast properties vol.27, pp.8, 2021, https://doi.org/10.1007/s00542-020-05136-6
  9. Dispersion of waves characteristics of laminated composite nanoplate vol.40, pp.3, 2020, https://doi.org/10.12989/scs.2021.40.3.355
  10. Vibration characteristics of microplates with GNPs-reinforced epoxy core bonded to piezoelectric-reinforced CNTs patches vol.11, pp.2, 2020, https://doi.org/10.12989/anr.2021.11.2.115
  11. A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage vol.79, pp.5, 2020, https://doi.org/10.12989/sem.2021.79.5.531