DOI QR코드

DOI QR Code

The Antitumor Potentials of Benzimidazole Anthelmintics as Repurposing Drugs

  • Deok-Soo Son (Department of Biochemistry, Cancer Biology, Neurosciences and Pharmacology, School of Medicine, Meharry Medical College) ;
  • Eun-Sook Lee (Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University) ;
  • Samuel E. Adunyah (Department of Biochemistry, Cancer Biology, Neurosciences and Pharmacology, School of Medicine, Meharry Medical College)
  • Received : 2020.06.15
  • Accepted : 2020.07.21
  • Published : 2020.08.31

Abstract

The development of refractory tumor cells limits therapeutic efficacy in cancer by activating mechanisms that promote cellular proliferation, migration, invasion, metastasis, and survival. Benzimidazole anthelmintics have broad-spectrum action to remove parasites both in human and veterinary medicine. In addition to being antiparasitic agents, benzimidazole anthelmintics are known to exert anticancer activities, such as the disruption of microtubule polymerization, the induction of apoptosis, cell cycle (G2/M) arrest, anti-angiogenesis, and blockage of glucose transport. These antitumorigenic effects even extend to cancer cells resistant to approved therapies and when in combination with conventional therapeutics, enhance anticancer efficacy and hold promise as adjuvants. Above all, these anthelmintics may offer a broad, safe spectrum to treat cancer, as demonstrated by their long history of use as antiparasitic agents. The present review summarizes central literature regarding the anticancer effects of benzimidazole anthelmintics, including albendazole, parbendazole, fenbendazole, mebendazole, oxibendazole, oxfendazole, ricobendazole, and flubendazole in cancer cell lines, animal tumor models, and clinical trials. This review provides valuable information on how to improve the quality of life in patients with cancers by increasing the treatment options and decreasing side effects from conventional therapy.

Keywords

Acknowledgement

This research was supported, in whole or in part, by the National Institutes of Health (NIH) under the following grants: NCI SC1CA200519 (D.S.) and U54CA163069 (S.E.A. and D.S.); RCMI 5U54AMD007586 (S.E.A.); and R01ES024756 (E.L.). Research contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. Editing services were provided by the Meharry Office of Scientific Editing and Publications (NIH S21MD000104).

References

  1. Furtado LFV, de Paiva Bello ACP, Rabelo EML. Benzimidazole resistance in helminths: from problem to diagnosis. Acta Trop 2016;162:95-102. https://doi.org/10.1016/j.actatropica.2016.06.021
  2. Friedman PA, Platzer EG. Interaction of anthelmintic benzimidazoles with Ascaris suum embryonic tubulin. Biochim Biophys Acta 1980;630:271-278. https://doi.org/10.1016/0304-4165(80)90431-6
  3. Cleeland CS, Allen JD, Roberts SA, Brell JM, Giralt SA, Khakoo AY, Kirch RA, Kwitkowski VE, Liao Z, Skillings J. Reducing the toxicity of cancer therapy: recognizing needs, taking action. Nat Rev Clin Oncol 2012;9:471-478. https://doi.org/10.1038/nrclinonc.2012.99
  4. Tang Y, Liang J, Wu A, Chen Y, Zhao P, Lin T, Zhang M, Xu Q, Wang J, Huang Y. Co-delivery of trichosanthin and albendazole by nano-self-assembly for overcoming tumor multidrug-resistance and metastasis. ACS Appl Mater Interfaces 2017;9:26648-26664. https://doi.org/10.1021/acsami.7b05292
  5. Dayan AD. Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Trop 2003;86:141-159. https://doi.org/10.1016/S0001-706X(03)00031-7
  6. Lai SR, Castello SA, Robinson AC, Koehler JW. In vitro anti-tubulin effects of mebendazole and fenbendazole on canine glioma cells. Vet Comp Oncol 2017;15:1445-1454. https://doi.org/10.1111/vco.12288
  7. Marslin G, Siram K, Liu X, Khandelwal VKM, Xiaolei S, Xiang W, Franklin G. Solid lipid nanoparticles of albendazole for enhancing cellular uptake and cytotoxicity against U-87 MG glioma cell lines. Molecules 2017;22:2040.
  8. Bai RY, Staedtke V, Aprhys CM, Gallia GL, Riggins GJ. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro Oncol 2011;13:974-982. https://doi.org/10.1093/neuonc/nor077
  9. Kipper FC, Silva AO, Marc AL, Confortin G, Junqueira AV, Neto EP, Lenz G. Vinblastine and antihelmintic mebendazole potentiate temozolomide in resistant gliomas. Invest New Drugs 2018;36:323-331. https://doi.org/10.1007/s10637-017-0503-7
  10. Markowitz D, Ha G, Ruggieri R, Symons M. Microtubule-targeting agents can sensitize cancer cells to ionizing radiation by an interphase-based mechanism. Onco Targets Ther 2017;10:5633-5642. https://doi.org/10.2147/OTT.S143096
  11. De Witt M, Gamble A, Hanson D, Markowitz D, Powell C, Al Dimassi S, Atlas M, Boockvar J, Ruggieri R, Symons M. Repurposing mebendazole as a replacement for vincristine for the treatment of brain tumors. Mol Med 2017;23:50-56. https://doi.org/10.2119/molmed.2017.00011
  12. Larsen AR, Bai RY, Chung JH, Borodovsky A, Rudin CM, Riggins GJ, Bunz F. Repurposing the antihelmintic mebendazole as a hedgehog inhibitor. Mol Cancer Ther 2015;14:3-13. https://doi.org/10.1158/1535-7163.MCT-14-0755-T
  13. Skibinski CG, Williamson T, Riggins GJ. Mebendazole and radiation in combination increase survival through anticancer mechanisms in an intracranial rodent model of malignant meningioma. J Neurooncol 2018;140:529-538. https://doi.org/10.1007/s11060-018-03009-7
  14. Michaelis M, Agha B, Rothweiler F, Loschmann N, Voges Y, Mittelbronn M, Starzetz T, Harter PN, Abhari BA, Fulda S, et al. Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen. Sci Rep 2015;5:8202.
  15. Liu H, Sun H, Zhang B, Liu S, Deng S, Weng Z, Zuo B, Yang J, He Y. 18F-FDG PET imaging for monitoring the early anti-tumor effect of albendazole on triple-negative breast cancer. Breast Cancer 2020;27:372-380. https://doi.org/10.1007/s12282-019-01027-5
  16. Zhang L, Bochkur Dratver M, Yazal T, Dong K, Nguyen A, Yu G, Dao A, Bochkur Dratver M, Duhachek-Muggy S, Bhat K, et al. Mebendazole potentiates radiation therapy in triple-negative breast cancer. Int J Radiat Oncol Biol Phys 2019;103:195-207. https://doi.org/10.1016/j.ijrobp.2018.08.046
  17. Oh E, Kim YJ, An H, Sung D, Cho TM, Farrand L, Jang S, Seo JH, Kim JY. Flubendazole elicits anti-metastatic effects in triple-negative breast cancer via STAT3 inhibition. Int J Cancer 2018;143:1978-1993. https://doi.org/10.1002/ijc.31585
  18. Zhang L, Guo M, Li J, Zheng Y, Zhang S, Xie T, Liu B. Systems biology-based discovery of a potential Atg4B agonist (Flubendazole) that induces autophagy in breast cancer. Mol Biosyst 2015;11:2860-2866. https://doi.org/10.1039/C5MB00466G
  19. Hou ZJ, Luo X, Zhang W, Peng F, Cui B, Wu SJ, Zheng FM, Xu J, Xu LZ, Long ZJ, et al. Flubendazole, FDA-approved anthelmintic, targets breast cancer stem-like cells. Oncotarget 2015;6:6326-6340. https://doi.org/10.18632/oncotarget.3436
  20. Kim YJ, Sung D, Oh E, Cho Y, Cho TM, Farrand L, Seo JH, Kim JY. Flubendazole overcomes trastuzumab resistance by targeting cancer stem-like properties and HER2 signaling in HER2-positive breast cancer. Cancer Lett 2018;412:118-130. https://doi.org/10.1016/j.canlet.2017.10.020
  21. Coyne CP, Jones T, Bear R. Gemcitabine-(C4-amide)-[anti-HER2/neu] anti-neoplastic cytotoxicity in dual combination with mebendazole against chemotherapeutic-resistant mammary adenocarcinoma. J Clin Exp Oncol 2013;2:1000109.
  22. Belaz KR, Denadai M, Almeida AP, Lima RT, Vasconcelos MH, Pinto MM, Cass QB, Oliveira RV. Enantiomeric resolution of albendazole sulfoxide by semipreparative HPLC and in vitro study of growth inhibitory effects on human cancer cell lines. J Pharm Biomed Anal 2012;66:100-108.  https://doi.org/10.1016/j.jpba.2012.03.012
  23. Mrkvova Z, Uldrijan S, Pombinho A, Bartunek P, Slaninova I. Benzimidazoles downregulate Mdm2 and MdmX and activate p53 in MdmX overexpressing tumor cells. Molecules 2019;24:2152.
  24. Zanganeh S, Khosravi S, Namdar N, Amiri MH, Gharooni M, Abdolahad M. Electrochemical approach for monitoring the effect of anti tubulin drugs on breast cancer cells based on silicon nanograss electrodes. Anal Chim Acta 2016;938:72-81. https://doi.org/10.1016/j.aca.2016.07.042
  25. Shashaani H, Faramarzpour M, Hassanpour M, Namdar N, Alikhani A, Abdolahad M. Silicon nanowire based biosensing platform for electrochemical sensing of Mebendazole drug activity on breast cancer cells. Biosens Bioelectron 2016;85:363-370. https://doi.org/10.1016/j.bios.2016.04.081
  26. Taranejoo S, Janmaleki M, Pachenari M, Seyedpour SM, Chandrasekaran R, Cheng W, Hourigan K. Dual effect of F-actin targeted carrier combined with antimitotic drug on aggressive colorectal cancer cytoskeleton: allying dissimilar cell cytoskeleton disrupting mechanisms. Int J Pharm 2016;513:464-472. https://doi.org/10.1016/j.ijpharm.2016.09.056
  27. Priotti J, Baglioni MV, Garcia A, Rico MJ, Leonardi D, Lamas MC, Menacho Marquez M. Repositioning of anti-parasitic drugs in cyclodextrin inclusion complexes for treatment of triple-negative breast cancer. AAPS PharmSciTech 2018;19:3734-3741. https://doi.org/10.1208/s12249-018-1169-y
  28. Duan Q, Liu Y, Booth CJ, Rockwell S. Use of fenbendazole-containing therapeutic diets for mice in experimental cancer therapy studies. J Am Assoc Lab Anim Sci 2012;51:224-230.
  29. Duan Q, Liu Y, Rockwell S. Fenbendazole as a potential anticancer drug. Anticancer Res 2013;33:355-362.
  30. Spagnuolo PA, Hu J, Hurren R, Wang X, Gronda M, Sukhai MA, Di Meo A, Boss J, Ashali I, Beheshti Zavareh R, et al. The antihelmintic flubendazole inhibits microtubule function through a mechanism distinct from Vinca alkaloids and displays preclinical activity in leukemia and myeloma. Blood 2010;115:4824-4833.
  31. Kralova V, Hanusova V, Stankova P, Knoppova K, Canova K, Skalova L. Antiproliferative effect of benzimidazole anthelmintics albendazole, ricobendazole, and flubendazole in intestinal cancer cell lines. Anticancer Drugs 2013;24:911-919. https://doi.org/10.1097/CAD.0b013e3283648c69
  32. Hanusova V, Skalova L, Kralova V, Matouskova P. The effect of flubendazole on adhesion and migration in SW480 and SW620 colon cancer cells. Anticancer Agents Med Chem 2018;18:837-846. https://doi.org/10.2174/1871520618666171213141911
  33. Kralova V, Hanusova V, Rudolf E, Canova K, Skalova L. Flubendazole induces mitotic catastrophe and senescence in colon cancer cells in vitro. J Pharm Pharmacol 2016;68:208-218. https://doi.org/10.1111/jphp.12503
  34. Lin S, Yang L, Yao Y, Xu L, Xiang Y, Zhao H, Wang L, Zuo Z, Huang X, Zhao C. Flubendazole demonstrates valid antitumor effects by inhibiting STAT3 and activating autophagy. J Exp Clin Cancer Res 2019;38:293.
  35. Williamson T, Bai RY, Staedtke V, Huso D, Riggins GJ. Mebendazole and a non-steroidal antiinflammatory combine to reduce tumor initiation in a colon cancer preclinical model. Oncotarget 2016;7:68571-68584. https://doi.org/10.18632/oncotarget.11851
  36. Ehteda A, Galettis P, Pillai K, Morris DL. Combination of albendazole and 2-methoxyestradiol significantly improves the survival of HCT-116 tumor-bearing nude mice. BMC Cancer 2013;13:86.
  37. Ehteda A, Galettis P, Chu SW, Pillai K, Morris DL. Complexation of albendazole with hydroxypropyl-β-cyclodextrin significantly improves its pharmacokinetic profile, cell cytotoxicity and antitumor efficacy in nude mice. Anticancer Res 2012;32:3659-3666.
  38. Dogra N, Mukhopadhyay T. Impairment of the ubiquitin-proteasome pathway by methyl N-(6-phenylsulfanyl-1H-benzimidazol-2-yl)carbamate leads to a potent cytotoxic effect in tumor cells: a novel antiproliferative agent with a potential therapeutic implication. J Biol Chem 2012;287:30625-30640. https://doi.org/10.1074/jbc.M111.324228
  39. Pourgholami MH, Akhter J, Wang L, Lu Y, Morris DL. Antitumor activity of albendazole against the human colorectal cancer cell line HT-29: in vitro and in a xenograft model of peritoneal carcinomatosis. Cancer Chemother Pharmacol 2005;55:425-432.  https://doi.org/10.1007/s00280-004-0927-6
  40. Zhang X, Zhao J, Gao X, Pei D, Gao C. Anthelmintic drug albendazole arrests human gastric cancer cells at the mitotic phase and induces apoptosis. Exp Ther Med 2017;13:595-603. https://doi.org/10.3892/etm.2016.3992
  41. Pinto LC, Soares BM, Pinheiro JJ, Riggins GJ, Assumpcao PP, Burbano RM, Montenegro RC. The anthelmintic drug mebendazole inhibits growth, migration and invasion in gastric cancer cell model. Toxicol In Vitro 2015;29:2038-2044. https://doi.org/10.1016/j.tiv.2015.08.007
  42. Pinto LC, Mesquita FP, Soares BM, da Silva EL, Puty B, de Oliveira EHC, Burbano RR, Montenegro RC. Mebendazole induces apoptosis via C-MYC inactivation in malignant ascites cell line (AGP01). Toxicol In Vitro 2019;60:305-312. https://doi.org/10.1016/j.tiv.2019.06.010
  43. Celestino Pinto L, de Fatima Aquino Moreira-Nunes C, Soares BM, Burbano RMR, de Lemos JAR, Montenegro RC. Mebendazole, an antiparasitic drug, inhibits drug transporters expression in preclinical model of gastric peritoneal carcinomatosis. Toxicol In Vitro 2017;43:87-91. https://doi.org/10.1016/j.tiv.2017.06.007
  44. Ghasemi F, Black M, Vizeacoumar F, Pinto N, Ruicci KM, Le CC, Lowerison MR, Leong HS, Yoo J, Fung K, et al. Repurposing albendazole: new potential as a chemotherapeutic agent with preferential activity against HPV-negative head and neck squamous cell cancer. Oncotarget 2017;8:71512-71519. https://doi.org/10.18632/oncotarget.17292
  45. Zhang F, Li Y, Zhang H, Huang E, Gao L, Luo W, Wei Q, Fan J, Song D, Liao J, et al. Anthelmintic mebendazole enhances cisplatin's effect on suppressing cell proliferation and promotes differentiation of head and neck squamous cell carcinoma (HNSCC). Oncotarget 2017;8:12968-12982. https://doi.org/10.18632/oncotarget.14673
  46. Wang LJ, Lee YC, Huang CH, Shi YJ, Chen YJ, Pei SN, Chou YW, Chang LS. Non-mitotic effect of albendazole triggers apoptosis of human leukemia cells via SIRT3/ROS/p38 MAPK/TTP axis-mediated TNF-α upregulation. Biochem Pharmacol 2019;162:154-168. https://doi.org/10.1016/j.bcp.2018.11.003
  47. Li Y, Thomas D, Deutzmann A, Majeti R, Felsher DW, Dill DL. Mebendazole for differentiation therapy of acute myeloid leukemia identified by a lineage maturation index. Sci Rep 2019;9:16775.
  48. Blom K, Senkowski W, Jarvius M, Berglund M, Rubin J, Lenhammar L, Parrow V, Andersson C, Loskog A, Fryknas M, et al. The anticancer effect of mebendazole may be due to M1 monocyte/macrophage activation via ERK1/2 and TLR8-dependent inflammasome activation. Immunopharmacol Immunotoxicol 2017;39:199-210. https://doi.org/10.1080/08923973.2017.1320671
  49. Khalilzadeh A, Wangoo KT, Morris DL, Pourgholami MH. Epothilone-paclitaxel resistant leukemic cells CEM/dEpoB300 are sensitive to albendazole: Involvement of apoptotic pathways. Biochem Pharmacol 2007;74:407-414. https://doi.org/10.1016/j.bcp.2007.05.006
  50. Kang BS, Lee SE, Ng CL, Kim JK, Park JS. Exploring the preparation of albendazole-loaded chitosantripolyphosphate nanoparticles. Materials (Basel) 2015;8:486-498. https://doi.org/10.3390/ma8020486
  51. Younis NS, Ghanim AMH, Saber S. Mebendazole augments sensitivity to sorafenib by targeting MAPK and BCL-2 signalling in n-nitrosodiethylamine-induced murine hepatocellular carcinoma. Sci Rep 2019;9:19095.
  52. Pourgholami MH, Woon L, Almajd R, Akhter J, Bowery P, Morris DL. In vitro and in vivo suppression of growth of hepatocellular carcinoma cells by albendazole. Cancer Lett 2001;165:43-49. https://doi.org/10.1016/S0304-3835(01)00382-2
  53. Shimomura I, Yokoi A, Kohama I, Kumazaki M, Tada Y, Tatsumi K, Ochiya T, Yamamoto Y. Drug library screen reveals benzimidazole derivatives as selective cytotoxic agents for KRAS-mutant lung cancer. Cancer Lett 2019;451:11-22. https://doi.org/10.1016/j.canlet.2019.03.002
  54. Zhou F, Du J, Wang J. Albendazole inhibits HIF-1α-dependent glycolysis and VEGF expression in nonsmall cell lung cancer cells. Mol Cell Biochem 2017;428:171-178. https://doi.org/10.1007/s11010-016-2927-3
  55. Dogra N, Kumar A, Mukhopadhyay T. Fenbendazole acts as a moderate microtubule destabilizing agent and causes cancer cell death by modulating multiple cellular pathways. Sci Rep 2018;8:11926. 
  56. Sasaki J, Ramesh R, Chada S, Gomyo Y, Roth JA, Mukhopadhyay T. The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol Cancer Ther 2002;1:1201-1209.
  57. Mukhopadhyay T, Sasaki J, Ramesh R, Roth JA. Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo. Clin Cancer Res 2002;8:2963-2969.
  58. Xu D, Tian W, Jiang C, Huang Z, Zheng S. The anthelmintic agent oxfendazole inhibits cell growth in non-small cell lung cancer by suppressing c-Src activation. Mol Med Rep 2019;19:2921-2926. https://doi.org/10.3892/mmr.2019.9897
  59. Patel K, Doudican NA, Schiff PB, Orlow SJ. Albendazole sensitizes cancer cells to ionizing radiation. Radiat Oncol 2011;6:160.
  60. Kralova V, Hanusova V, Caltova K, Spacek P, Hochmalova M, Skalova L, Rudolf E. Flubendazole and mebendazole impair migration and epithelial to mesenchymal transition in oral cell lines. Chem Biol Interact 2018;293:124-132. https://doi.org/10.1016/j.cbi.2018.07.026
  61. Pillai K, Akhter J, Morris DL. Super aqueous solubility of albendazole in β-cyclodextrin for parenteral application in cancer therapy. J Cancer 2017;8:913-923. https://doi.org/10.7150/jca.17301
  62. Pourgholami MH, Wangoo KT, Morris DL. Albendazole-cyclodextrin complex: enhanced cytotoxicity in ovarian cancer cells. Anticancer Res 2008;28:2775-2779.
  63. Noorani L, Stenzel M, Liang R, Pourgholami MH, Morris DL. Albumin nanoparticles increase the anticancer efficacy of albendazole in ovarian cancer xenograft model. J Nanobiotechnology 2015;13:25.
  64. Pourgholami MH, Cai ZY, Badar S, Wangoo K, Poruchynsky MS, Morris DL. Potent inhibition of tumoral hypoxia-inducible factor 1alpha by albendazole. BMC Cancer 2010;10:143.
  65. Pourgholami MH, Yan Cai Z, Lu Y, Wang L, Morris DL. Albendazole: a potent inhibitor of vascular endothelial growth factor and malignant ascites formation in OVCAR-3 tumor-bearing nude mice. Clin Cancer Res 2006;12:1928-1935. https://doi.org/10.1158/1078-0432.CCR-05-1181
  66. Hettiarachchi G, Samanta SK, Falcinelli S, Zhang B, Moncelet D, Isaacs L, Briken V. Acyclic cucurbit[n] uril-type molecular container enables systemic delivery of effective doses of albendazole for treatment of SK-OV-3 xenograft tumors. Mol Pharm 2016;13:809-818. https://doi.org/10.1021/acs.molpharmaceut.5b00723
  67. Chu SW, Badar S, Morris DL, Pourgholami MH. Potent inhibition of tubulin polymerisation and proliferation of paclitaxel-resistant 1A9PTX22 human ovarian cancer cells by albendazole. Anticancer Res 2009;29:3791-3796.
  68. Florio R, Veschi S, di Giacomo V, Pagotto S, Carradori S, Verginelli F, Cirilli R, Casulli A, Grassadonia A, Tinari N, et al. The benzimidazole-based anthelmintic parbendazole: a repurposed drug candidate that synergizes with gemcitabine in pancreatic cancer. Cancers (Basel) 2019;11:11.
  69. Chen H, Weng Z, Xu C. Albendazole suppresses cell proliferation and migration and induces apoptosis in human pancreatic cancer cells. Anticancer Drugs 2020;31:431-439. https://doi.org/10.1097/CAD.0000000000000914
  70. Rushworth LK, Hewit K, Munnings-Tomes S, Somani S, James D, Shanks E, Dufes C, Straube A, Patel R, Leung HY. Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment. Br J Cancer 2020;122:517-527. https://doi.org/10.1038/s41416-019-0681-5
  71. Chen Q, Li Y, Zhou X, Li R. Oxibendazole inhibits prostate cancer cell growth. Oncol Lett 2018;15:2218-2226.
  72. Zhang QL, Lian DD, Zhu MJ, Li XM, Lee JK, Yoon TJ, Lee JH, Jiang RH, Kim CD. Antitumor effect of albendazole on cutaneous squamous cell carcinoma (SCC) cells. BioMed Res Int 2019;2019:3689517.
  73. Canova K, Rozkydalova L, Vokurkova D, Rudolf E. Flubendazole induces mitotic catastrophe and apoptosis in melanoma cells. Toxicol In Vitro 2018;46:313-322.  https://doi.org/10.1016/j.tiv.2017.10.025
  74. Doudican NA, Byron SA, Pollock PM, Orlow SJ. XIAP downregulation accompanies mebendazole growth inhibition in melanoma xenografts. Anticancer Drugs 2013;24:181-188. https://doi.org/10.1097/CAD.0b013e32835a43f1
  75. Simbulan-Rosenthal CM, Dakshanamurthy S, Gaur A, Chen YS, Fang HB, Abdussamad M, Zhou H, Zapas J, Calvert V, Petricoin EF, et al. The repurposed anthelmintic mebendazole in combination with trametinib suppresses refractory NRASQ61K melanoma. Oncotarget 2017;8:12576-12595. https://doi.org/10.18632/oncotarget.14990
  76. Li Y, Acharya G, Elahy M, Xin H, Khachigian LM. The anthelmintic flubendazole blocks human melanoma growth and metastasis and suppresses programmed cell death protein-1 and myeloid-derived suppressor cell accumulation. Cancer Lett 2019;459:268-276. https://doi.org/10.1016/j.canlet.2019.05.026
  77. Doudican N, Rodriguez A, Osman I, Orlow SJ. Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Mol Cancer Res 2008;6:1308-1315. https://doi.org/10.1158/1541-7786.MCR-07-2159
  78. Williamson T, Mendes TB, Joe N, Cerutti JM, Riggins GJ. Mebendazole inhibits tumor growth and prevents lung metastasis in models of advanced thyroid cancer. Endocr Relat Cancer 2020;27:123-136. https://doi.org/10.1530/ERC-19-0341
  79. Martarelli D, Pompei P, Baldi C, Mazzoni G. Mebendazole inhibits growth of human adrenocortical carcinoma cell lines implanted in nude mice. Cancer Chemother Pharmacol 2008;61:809-817. https://doi.org/10.1007/s00280-007-0538-0
  80. Sawanyawisuth K, Williamson T, Wongkham S, Riggins GJ. Effect of the antiparasitic drug mebendazole on cholangiocarcinoma growth. Southeast Asian J Trop Med Public Health 2014;45:1264-1270.
  81. Sung SJ, Kim HK, Hong YK, Joe YA. Autophagy is a potential target for enhancing the anti-angiogenic effect of mebendazole in endothelial cells. Biomol Ther (Seoul) 2019;27:117-125. https://doi.org/10.4062/biomolther.2018.222
  82. Hassanpour M, Rezabakhsh A, Pezeshkian M, Rahbarghazi R, Nouri M. Distinct role of autophagy on angiogenesis: highlights on the effect of autophagy in endothelial lineage and progenitor cells. Stem Cell Res Ther 2018;9:305.
  83. Kardideh B, Samimi Z, Norooznezhad F, Kiani S, Mansouri K. Autophagy, cancer and angiogenesis: where is the link? Cell Biosci 2019;9:65.
  84. Bhutia SK, Mukhopadhyay S, Sinha N, Das DN, Panda PK, Patra SK, Maiti TK, Mandal M, Dent P, Wang XY, et al. Autophagy: cancer's friend or foe? Adv Cancer Res 2013;118:61-95. https://doi.org/10.1016/B978-0-12-407173-5.00003-0
  85. Mandhair HK, Arambasic M, Novak U, Radpour R. Molecular modulation of autophagy: New venture to target resistant cancer stem cells. World J Stem Cells 2020;12:303-322. https://doi.org/10.4252/wjsc.v12.i5.303
  86. Gorgulu K, Diakopoulos KN, Kaya-Aksoy E, Ciecielski KJ, Ai J, Lesina M, Algul H. The role of autophagy in pancreatic cancer: from bench to the dark bedside. Cells 2020;9:1063.
  87. Tan Z, Chen L, Zhang S. Comprehensive modeling and discovery of mebendazole as a novel TRAF2- and NCK-interacting kinase inhibitor. Sci Rep 2016;6:33534.
  88. Shitashige M, Satow R, Jigami T, Aoki K, Honda K, Shibata T, Ono M, Hirohashi S, Yamada T. Traf2- and Nck-interacting kinase is essential for Wnt signaling and colorectal cancer growth. Cancer Res 2010;70:5024-5033. https://doi.org/10.1158/0008-5472.CAN-10-0306
  89. Walker JC, Harland RM. microRNA-24a is required to repress apoptosis in the developing neural retina. Genes Dev 2009;23:1046-1051. https://doi.org/10.1101/gad.1777709
  90. Sun Y, Yu X, Bai Q. miR-204 inhibits invasion and epithelial-mesenchymal transition by targeting FOXM1 in esophageal cancer. Int J Clin Exp Pathol 2015;8:12775-12783.
  91. Rubin J, Mansoori S, Blom K, Berglund M, Lenhammar L, Andersson C, Loskog A, Fryknas M, Nygren P, Larsson R. Mebendazole stimulates CD14+ myeloid cells to enhance T-cell activation and tumour cell killing. Oncotarget 2018;9:30805-30813.  https://doi.org/10.18632/oncotarget.25713
  92. Bai RY, Staedtke V, Wanjiku T, Rudek MA, Joshi A, Gallia GL, Riggins GJ. Brain penetration and efficacy of different mebendazole polymorphs in a mouse brain tumor model. Clin Cancer Res 2015;21:3462-3470. https://doi.org/10.1158/1078-0432.CCR-14-2681
  93. Bai RY, Staedtke V, Rudin CM, Bunz F, Riggins GJ. Effective treatment of diverse medulloblastoma models with mebendazole and its impact on tumor angiogenesis. Neuro-oncol 2015;17:545-554. https://doi.org/10.1093/neuonc/nou234
  94. Choi EK, Kim SW, Nam EJ, Paek J, Yim GW, Kang MH, Kim YT. Differential effect of intraperitoneal albendazole and paclitaxel on ascites formation and expression of vascular endothelial growth factor in ovarian cancer cell-bearing athymic nude mice. Reprod Sci 2011;18:763-771. https://doi.org/10.1177/1933719111398142
  95. Pourgholami MH, Szwajcer M, Chin M, Liauw W, Seef J, Galettis P, Morris DL, Links M. Phase I clinical trial to determine maximum tolerated dose of oral albendazole in patients with advanced cancer. Cancer Chemother Pharmacol 2010;65:597-605. https://doi.org/10.1007/s00280-009-1157-8
  96. Nygren P, Larsson R. Drug repositioning from bench to bedside: tumour remission by the antihelmintic drug mebendazole in refractory metastatic colon cancer. Acta Oncol 2014;53:427-428. https://doi.org/10.3109/0284186X.2013.844359
  97. Dobrosotskaya IY, Hammer GD, Schteingart DE, Maturen KE, Worden FP. Mebendazole monotherapy and long-term disease control in metastatic adrenocortical carcinoma. Endocr Pract 2011;17:e59-e62. https://doi.org/10.4158/EP10390.CR
  98. Morris DL, Jourdan JL, Pourgholami MH. Pilot study of albendazole in patients with advanced malignancy. Effect on serum tumor markers/high incidence of neutropenia. Oncology 2001;61:42-46. https://doi.org/10.1159/000055351
  99. Malik K, Dua A. Albendazole. In: StatPearls. Treasure Island, FL: StatPearls Publishing StatPearls Publishing LLC.; 2020.
  100. Albendazole. In: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases; 2012.
  101. Hong ST. Albendazole and praziquantel: review and safety monitoring in Korea. Infect Chemother 2018;50:1-10. https://doi.org/10.3947/ic.2018.50.1.1
  102. Pawluk SA, Roels CA, Wilby KJ, Ensom MH. A review of pharmacokinetic drug-drug interactions with the anthelmintic medications albendazole and mebendazole. Clin Pharmacokinet 2015;54:371-383. https://doi.org/10.1007/s40262-015-0243-9
  103. Mebendazole. In: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases; 2012.
  104. Pantziarka P, Bouche G, Meheus L, Sukhatme V, Sukhatme VP. Repurposing drugs in oncology (ReDO)-mebendazole as an anti-cancer agent. Ecancermedicalscience 2014;8:443.
  105. Capece BP, Virkel GL, Lanusse CE. Enantiomeric behaviour of albendazole and fenbendazole sulfoxides in domestic animals: pharmacological implications. Vet J 2009;181:241-250. https://doi.org/10.1016/j.tvjl.2008.11.010
  106. Villar D, Cray C, Zaias J, Altman NH. Biologic effects of fenbendazole in rats and mice: a review. J Am Assoc Lab Anim Sci 2007;46:8-15.
  107. Gonzalez AE, Codd EE, Horton J, Garcia HH, Gilman RH. Oxfendazole: a promising agent for the treatment and control of helminth infections in humans. Expert Rev Anti Infect Ther 2019;17:51-56. https://doi.org/10.1080/14787210.2018.1555241
  108. Canova K, Rozkydalova L, Rudolf E. Anthelmintic flubendazole and its potential use in anticancer therapy. Acta Med (Hradec Kralove) 2017;60:5-11. https://doi.org/10.14712/18059694.2017.44
  109. Theodorides VJ, DiCuollo CJ, Nawalinski T, Miller CR, Murphy JR, Freeman JF, Killeen JC Jr, Rapp WR. Toxicologic and teratologic studies of oxibendazole in ruminants and laboratory animals. Am J Vet Res 1977;38:809-814.
  110. Al-Hadiya BM. Parbendazole. Profiles Drug Subst Excip Relat Methodol 2010;35:263-284. https://doi.org/10.1016/S1871-5125(10)35005-9
  111. Sanchez S, Alvarez L, Sallovitz J, Lanusse C. Enhanced plasma and target tissue availabilities of albendazole and albendazole sulphoxide in fasted calves: evaluation of different fasting intervals. J Vet Pharmacol Ther 2000;23:193-201.  https://doi.org/10.1046/j.1365-2885.2000.00265.x
  112. Movahedi F, Li L, Gu W, Xu ZP. Nanoformulations of albendazole as effective anticancer and antiparasite agents. Nanomedicine (Lond) 2017;12:2555-2574. https://doi.org/10.2217/nnm-2017-0102
  113. Morris DL, Smith PG. Albendazole in hydatid disease--hepatocellular toxicity. Trans R Soc Trop Med Hyg 1987;81:343-344. https://doi.org/10.1016/0035-9203(87)90259-8
  114. Eckardt K, Kaltenhauser J, Kilb C, Seiler A, Stahlmann R. Relative potency of albendazole and its sulfoxide metabolite in two in vitro tests for developmental toxicity: the rat whole embryo culture and the mouse embryonic stem cell test. Reprod Toxicol 2012;34:378-384. https://doi.org/10.1016/j.reprotox.2012.05.037
  115. Navarro M, Canut L, Carretero A, Cristofol C, Perez-Aparicio FJ, Arboix M, Ruberte J. Developmental toxicity in rat fetuses exposed to the benzimidazole netobimin. Reprod Toxicol 1999;13:295-302.  https://doi.org/10.1016/S0890-6238(99)00013-1