DOI QR코드

DOI QR Code

STRUCTURE JACOBI OPERATOR OF SEMI-INVARINAT SUBMANIFOLDS IN COMPLEX SPACE FORMS

  • Received : 2019.11.07
  • Accepted : 2020.01.03
  • Published : 2020.05.31

Abstract

Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, ξ, η, g) in a complex space form Mn+1(c), c ≠ 0. We denote by Rξ and R'X be the structure Jacobi operator with respect to the structure vector ξ and be R'X = (∇XR)(·, X)X for any unit vector field X on M, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξ𝜙 = 𝜙Rξ and at the same time R'ξ = 0, then M is a Hopf real hypersurfaces of type (A), provided that the scalar curvature ${\bar{r}}$ of M holds ${\bar{r}}-2(n-1)c{\leq}0$.

Keywords

References

  1. A. Bejancu, CR-submanifolds of a Kahler manifold I, Proc. Amer. Math. Soc. 69(1978), 135-142. https://doi.org/10.1090/S0002-9939-1978-0467630-0
  2. J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew. Math. 395(1989), 132-141.
  3. J. Berndt and L. Vanhecke, Two natural generalizations of locally symmetric spaces, Diff. Geom. Appl. 2(1992), 57-82. https://doi.org/10.1016/0926-2245(92)90009-C
  4. D. E. Blair, G. D. Ludden and K. Yano, Semi-invariant immersion, Kodai Math. Sem. Rep. 27(1976), 313-319. https://doi.org/10.2996/kmj/1138847256
  5. T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269(1982), 481-499. https://doi.org/10.1090/S0002-9947-1982-0637703-3
  6. T. E. Cecil and P. J. Ryan, Geometry of Hypersurfaces, Springer (2015).
  7. J. T. Cho and U-H. Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators. Acta Math. Hungar. 80(1998), 155-167. https://doi.org/10.1023/A:1006585128386
  8. J. T. Cho and U-H. Ki, Jacobi operators on real hypersurfaces of a complex projective space, Tsukuha J. Math. 22(1997), 145-156.
  9. J. Erbacher, Reduction of the codimension of an isometric immersion, J. Diff. Geom. 3(1971), 333-340.
  10. J. I. Her, U-H. Ki and S.-B. Lee, Semi-invariant submanifolds of codimension 3 of a complex projective space in terms of the Jacobi operator, Bull. Korean Math. Soc. 42(2005), 93-119. https://doi.org/10.4134/BKMS.2005.42.1.093
  11. U-H. Ki, Cyclic-parallel real hypersurfaces of a complex space form, Tsukuba J. Math. 12(1988), 259-268. https://doi.org/10.21099/tkbjm/1496160647
  12. U-H. Ki, H. Kurihara and H. Song, Semi-invariant submanifolds of codimension 3 in complex space forms in terms of the structure Jacobi operator, to appear.
  13. U-H. Ki and H. Song, Jacobi operators on a semi-invariant submanifolds of codimension 3 in a complex projective space, Nihonkai Math J. 14(2003), 1-16.
  14. U-H. Ki and H. Song, Submanifolds of codimension 3 in a complex space form with commuting structure Jacobi operator, to appear.
  15. U-H. Ki, H. Song and R. Takagi, Submanifolds of codimension 3 admitting almost contact metric structure in a complex projective space, Nihonkai Math J. 11(2000), 57-86.
  16. U-H. Ki, Soo Jin Kim and S.-B. Lee, The structure Jacobi operator on real hypersurfaces in a nonflat complex space form, Bull. Korean Math. Soc. 42(2005), 337-358. https://doi.org/10.4134/BKMS.2005.42.2.337
  17. M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296(1986), 137-149. https://doi.org/10.1090/S0002-9947-1986-0837803-2
  18. S. Montiel and A.Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20(1986), 245-261. https://doi.org/10.1007/BF00164402
  19. R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space form, in Tight and Taut submanifolds, Cambridge University Press : (1998(T. E. Cecil and S.-S. Chern eds.)), 233-305.
  20. M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212(1973), 355-364. https://doi.org/10.2307/1998631
  21. M. Okumura, Normal curvature and real submanifold of the complex projective space, Geom. Dedicata 7(1978), 509-517. https://doi.org/10.1007/BF00152072
  22. H. Song, Some differential-geometric properties of R-spaces, Tsukuba J. Math. 25(2001), 279-298. https://doi.org/10.21099/tkbjm/1496164288
  23. R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 19(1973), 495-506.
  24. R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I,II, J. Math. Soc. Japan 27(1975), 43-53, 507-516. https://doi.org/10.2969/jmsj/02710043
  25. Y. Tashiro, Relations between the theory of almost complex spaces and that of almost contact spaces (in Japanese), Sugaku 16(1964), 34-61.
  26. K. Yano, and U-H. Ki, On (f, g, u, v, w, ${\lambda}$, ${\mu}$, ${\nu}$)-structure satisfying ${\lambda}^2+{\mu}^2+{\nu}^2$ = 1, Kodai Math. Sem. Rep. 29(1978), 285-307. https://doi.org/10.2996/kmj/1138833653
  27. K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhauser (1983).

Cited by

  1. SEMI-INVARINAT SUBMANIFOLDS OF CODIMENSION 3 SATISFYING ${\nabla}_{{\phi}{\nabla}_{\xi}{\xi}}R_{\xi}=0$ IN A COMPLEX SPACE FORM vol.37, pp.1, 2020, https://doi.org/10.7858/eamj.2021.005