참고문헌
- P. Benge, A two-weight inequality for essentially well localized operators with general measures. J. Math. Anal. Appl, 479 (2019) no. 2, 1506-1518. https://doi.org/10.1016/j.jmaa.2019.07.009
-
O. Beznosova, Linear bound for the dyadic paraproduct on weighted Lebesgue space
$L^2(w)$ . J. Func. Anal. 255 (2008), 994-1007. https://doi.org/10.1016/j.jfa.2008.04.025 - O. Beznosova, D. Chung, J.C. Moraes, and M.C. Pereyra, On two weight estimates for dyadic operators, Harmonic analysis, partial differential equations, complex analysis, Banach space, and operator theory. Vol 2, Assoc. Women Math. Ser. 5. Springer, Cham, (2017), 135-169.
- D. Chung, C. Pereyra, and C. Perez, Sharp bounds for general comutators on weighted Lebesgue spaces. Trans. Amer. Math. Soc. 364 (3) (2012), 1163-1177. https://doi.org/10.1090/S0002-9947-2011-05534-0
- T. Hytonen, The sharp weighted bound for general Calderon-Zygmund Operators. Ann. of Math. (2) 175 (2012), no. 3, 1473-1506. https://doi.org/10.4007/annals.2012.175.3.9
- F. Nazarov, S. Treil, and A. Volberg, The Bellman functions and the two-weight inequalities for Haar Multiplies. J. of the AMS. 12 (1992), 909-928.
- E. T. Sawyer, A characterization of a two weight norm inequality for maximal operators. Studia Math 75 (1982), 1-11. https://doi.org/10.4064/sm-75-1-1-11
- S. Treil, A Remark on Two Weight Estimates for Positive Dyadic Operators, In: Grochenig K., Lyubarskii Y., Seip K. (eds) Operator-Related Function Theory and Time-Frequency Analysis. Abel Symposia, 9, Springer, Cham, 185-195.