DOI QR코드

DOI QR Code

REVISIT TO ALEXANDER MODULES OF 2-GENERATOR KNOTS IN THE 3-SPHERE

  • Song, Hyun-Jong (Department of Applied Mathematics, Pukyong National University)
  • Received : 2019.10.28
  • Accepted : 2020.04.15
  • Published : 2020.05.31

Abstract

It is known that a 2-generator knot K has a cyclic Alexander module ℤ[t, t―1]/(Δ(t)) where Δ(t) is the Alexander polynomial of K. In this paper we explicitly show how to reduce 2-generator Alexander modules to cyclic ones by using Chiswell, Glass and Wilsons presentations of 2-generator knot groups $$<\;x,\;y\;{\mid}\;(x^{{\alpha}_1})^{y^{{\gamma}_1}},\;{\cdots}\;,\;(x^{{\alpha}_k})^{y^{{\gamma}_k}}\;>$$ where ab = bab-1.

Keywords

References

  1. G. Berde and H. Zieschang, Knots. Walter de Gruyter, Berlin.New york, 2003.
  2. I.M. Chiswell, A.M.W. Glass and J.S. Wilson, Residual nilpotence and ortdering in one-relator groups and knot groups, arXiv:1405.0994v2. https://doi.org/10.1017/S0305004114000644
  3. T. Kanenobu and T. Sumi, Classification of a family of ribbon 2-knots with trivial Alexander polynomial, Commun. Korean Math. Soc. 33(2018), no.2, 591-604. https://doi.org/10.4134/CKMS.C170222
  4. C. McA. Gordon, Some aspects of classical knot theory. In: Knot theory (ed. J.C. Hausmann), Lect. Notes in Math. 685(1978),1-60. Berlin-Heidelberg-New York: Springer Verlag.
  5. R. Lyndon and P. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin Heidelberg New York 1977.
  6. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Wiley, New York, 1966.
  7. J. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds, Prindle, Weber, and Schmidt, Boston, Mass., 1968, 115-133.
  8. H.J. Song, Infinite cyclic covering spaces of (1,1)-knot complements, in preparation.
  9. H.J. Song, Knots with cyclic Alexander modules, in preparation.