DOI QR코드

DOI QR Code

능동 진동 제어 시스템을 이용한 UH-60A 헬리콥터 기체의 진동 감소 시뮬레이션

Vibration Reduction Simulation of UH-60A Helicopter Airframe Using Active Vibration Control System

  • Lee, Ye-Lin (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Do-Young (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Do-Hyung (Aeronautics Technology Research Division, Korea Aerospace Research Institute) ;
  • Hong, Sung-Boo (Department of Aerospace Engineering, Chungnam National University) ;
  • Park, Jae-Sang (Department of Aerospace Engineering, Chungnam National University)
  • 투고 : 2020.03.11
  • 심사 : 2020.05.19
  • 발행 : 2020.06.01

초록

대표적인 기동 헬리콥터인 UH-60A의 기체 진동응답을 감소시키고자 능동 진동 제어 시스템(Active Vibration Control System, AVCS)을 이용한 시뮬레이션 연구를 수행하였다. 로터 진동 하중, 기체 구조 동역학 모델링, 진동응답 해석 및 진동 제어 시뮬레이션 연구를 수행하기 위하여 DYMORE II, NDARC, MSC.NASTRAN 및 MATLAB Simulink 등의 다양한 해석, 설계 및 제어 프로그램들을 함께 사용하였다. 5개의 CRFG와 7개의 가속도계로 이루어진 Multi Input Multi Output(MIMO) 모델을 AVCS 시뮬레이션 연구에 이용하였다. 본 시뮬레이션 연구를 통하여 진동이 극심한 158knots의 비행속도에서 UH-60A의 주요 위치(조종석, 로터와 기체의 접합부, 중앙 승객실 및 후방 승객실) 위치에서 AVCS의 사용으로 인하여 4/rev 기체 진동응답이 25.14~96.05%만큼 감소될 수 있었다.

This study using the active vibration control technique attempts to alleviate numerically the airframe vibration of a UH-60A helicopter. The AVCS(Active Vibration Control System) is applied to reduce the 4/rev vibration responses at the specified locations of the UH-60A airframe. The 4/rev hub vibratory loads of the UH-60A rotor is predicted using the nonlinear flexible dynamics analysis code, DYMORE II. Various tools such as NDARC, MSC.NASTRAN, and MATLAB Simulink are used for the AVCS simulation with five CRFGs and seven accelerometers. At a flight speed of 158knots, the predicted 4/rev hub vibratory loads of UH-60A rotor excite the airframe, and then the 4/rev vibration responses at the specified airframe positions such as the pilot seat, rotor-fuselage joint, mid-cabin, and aft-cabin are calculated without and with AVCS. The 4/rev vibration responses at all the locations and directions are reduced by from 25.14 to 96.05% when AVCS is used, as compared to the baseline results without AVCS.

키워드

참고문헌

  1. Welsh, W., Fredrickson, C., Rauch, C. and Lyndon, I., "Flight Test of an Active Vibration Control System on the UH-60 Black Hawk Helicopter," Proceeding of The American Helicopter Society 51st Annual Forum, 1995.
  2. Millott, T. A., Goodman, R. K., Wong, J. K., Welsh, W. A., Correia, J. R. and Cassil, C. E., "Risk Reduction Flight Test of a Pre-production Active Vibration Control System for the UH-60M," Proceeding of The American Helicopter Society 59th Annual Forum, 2003.
  3. Kim, D. H., Kwak, D. I. and Song, Q., "Demonstration of Active Vibration Control System on a Korean Utility Helicopter," International Journal of Aeronautical and Space Sciences, Vol. 20, No. 1, 2019, pp. 249-259. https://doi.org/10.1007/s42405-018-0106-3
  4. Goodman, R. K. and Millott, T. A., "Design, Development, and Flight Testing of the Active Vibration Control System for the Sikorsky S-92," Proceeding of The American Helicopter Society 56th Annual Forum, 2000.
  5. Blackwell, R. and Millott, T., "Dynamics Design Characteristics of the Sikorsky X2 Technology$^{TM}$ Demonstrator Aircraft," Proceeding of The American Helicopter Society 64th Annual Forum, 2008.
  6. Lee, Y. L., Kim, D. H., Park, J. S. and Hong, S. B, "Vibration Reduction Simulations for Rotor and Airframe of a Lift-offset Compound Helicopter Using Two Active Vibration Control Techniques," Proceeding of The Transformative Vertical Flight Forum, 2020.
  7. Bauchau, O. A., "DYMORE User's Manual," 2006.
  8. Johnson, W., "NDARC-NASA Design and Analysis of Rotorcraft," Proceeding of The American Helicopter Society Specialists's Conference, 2010.
  9. Bousman, W. G. and Kufeld, R. M., "UH-60A Airloads Catalog," National Aeronautics and Space Administration, Ames Research Center, Vol. 212827, 2005.
  10. Norman, T., Peterson, R., Shinoda, P. and Datta, A., "Full-scale Wind Tunnel Test of the UH-60A Airloads Rotor," Proceeding of The American Helicopter Society 67th Annual Forum, 2011.
  11. Potsdam, M., Yeo, H. and Johnson, W., "Rotor Airloads Prediction using Loose Aerodynamic/ structural Coupling," Journal of The Aircraft, Vol. 43, No. 3, 2006, pp. 732-742. https://doi.org/10.2514/1.14006
  12. Yeo, H. and Romander, E. A., "Loads Correlation of a Full-scale UH-60A Airloads Rotor in a Wind Tunnel," Journal of The American Helicopter Society, Vol. 58, No. 2, 2013, pp. 1-8.
  13. Park, J. S., Jung, S. N. and Park, S. H., "Airloads Validation Study for UH-60A Rotor using Multibody Dynamics Modeling," Proceeding of The Korean Society for Aeronautical and Space Sciences Conference, 2009.
  14. Go, J. I., Park, J. S. and Choi, J. S., "Validation Study on Conceptual Design and Performance Analysis for Helicopter using NDARC," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 10, 2016, pp. 877-886. https://doi.org/10.5139/JKSAS.2016.44.10.877
  15. Idosor, F. and Seilble F., "Comparison of NASTRAN Analysis with Ground Vibration Results of UH-60A NASA/AEFA Test Configuration," NASA-CR-184565, 1990.
  16. Kim, D. H., Kim, T. J., Jung, S. U. and Kwak, D. I., "Test and Simulation of an Active Vibration Control System for Helicopter Applications," International Journal of Aeronautical and Space Sciences, Vol. 17, No. 3, 2016, pp. 442-453. https://doi.org/10.5139/IJASS.2016.17.3.442